1,987 research outputs found
Single shot parameter estimation via continuous quantum measurement
We present filtering equations for single shot parameter estimation using
continuous quantum measurement. By embedding parameter estimation in the
standard quantum filtering formalism, we derive the optimal Bayesian filter for
cases when the parameter takes on a finite range of values. Leveraging recent
convergence results [van Handel, arXiv:0709.2216 (2008)], we give a condition
which determines the asymptotic convergence of the estimator. For cases when
the parameter is continuous valued, we develop quantum particle filters as a
practical computational method for quantum parameter estimation.Comment: 9 pages, 5 image
CHRONEMIC ASPECTS OF CHAT, AND THEIR RELATIONSHIP TO TRUST IN A VIRTUAL TEAM
How does user personality impact pauses in online synchronous chat, and how do these pauses correlate with the development of trust in online teams? An analysis of hundreds of short chat sessions which took place between 62 pairs of participants in the DayTrader social dilemma game reveals a link between chronemic (time-related) variables and personality traits. The three chronemic variables that were analyzed, interpost pause, switching pause, and personal rhythm, were shorter in players who rated higher on extraversion, and longer in players who rated higher on agreeableness. The relationship between extraversion and shorter pauses is comparable to similar findings in spoken communication, while the relationship with agreeableness is novel. Furthermore, an analysis of the relationships between the three chronemic variables and the establishment of trust in the virtual teams confirms the hypothesis that longer pauses are associated with decreased trust. Three non mutually exclusive explanations are offered for this association: 1) longer pauses cause the decrease in trust; 2) longer pauses are the result of increased cognitive load associated with deception creation; and, 3) longer pauses are the result of increased efforts related to the suspicion that deception is taking place
Magnetometry via a double-pass continuous quantum measurement of atomic spin
We argue that it is possible in principle to reduce the uncertainty of an
atomic magnetometer by double-passing a far-detuned laser field through the
atomic sample as it undergoes Larmor precession. Numerical simulations of the
quantum Fisher information suggest that, despite the lack of explicit
multi-body coupling terms in the system's magnetic Hamiltonian, the parameter
estimation uncertainty in such a physical setup scales better than the
conventional Heisenberg uncertainty limit over a specified but arbitrary range
of particle number N. Using the methods of quantum stochastic calculus and
filtering theory, we demonstrate numerically an explicit parameter estimator
(called a quantum particle filter) whose observed scaling follows that of our
calculated quantum Fisher information. Moreover, the quantum particle filter
quantitatively surpasses the uncertainty limit calculated from the quantum
Cramer-Rao inequality based on a magnetic coupling Hamiltonian with only
single-body operators. We also show that a quantum Kalman filter is
insufficient to obtain super-Heisenberg scaling, and present evidence that such
scaling necessitates going beyond the manifold of Gaussian atomic states.Comment: 17 pages, updated to match print versio
Quantum measurement of a mesoscopic spin ensemble
We describe a method for precise estimation of the polarization of a
mesoscopic spin ensemble by using its coupling to a single two-level system.
Our approach requires a minimal number of measurements on the two-level system
for a given measurement precision. We consider the application of this method
to the case of nuclear spin ensemble defined by a single electron-charged
quantum dot: we show that decreasing the electron spin dephasing due to nuclei
and increasing the fidelity of nuclear-spin-based quantum memory could be
within the reach of present day experiments.Comment: 8 pages, 2 figures; minor changes, published versio
Stabilization of BEC droplet in free space by feedback control of interatomic interaction
A self-trapped Bose-Einstein condensate in three-dimensional free space is
shown to be stabilized by feedback control of the interatomic interaction
through nondestructive measurement of the condensate's peak column density. The
stability is found to be robust against poor resolution and experimental errors
in the measurement.Comment: 7 pages, 6 figure
Phase Mixing of Nonlinear Plasma Oscillations in an Arbitrary Mass Ratio Cold Plasma
Nonlinear plasma oscillations in an arbitrary mass ratio cold plasma have
been studied using 1-D particle-in-cell simulation. In contrast to earlier work
for infinitely massive ion plasmas it has been found that the oscillations
phase mix away at any amplitude and that the rate at which phase mixing occurs,
depends on the mass ratio () and the amplitude. A
perturbation theoretic calculation carried upto third order predicts that the
normalized phase mixing time depends on the amplitude
and the mass ratio as . We have confirmed this scaling in our simulations and
conclude that stable non-linear oscillations which never phase mix, exist only
for the ideal case with and . These cold plasma results
may have direct relevance to recent experiments on superintense laser beam
plasma interactions with applications to particle acceleration, fast ignitor
concept etc.Comment: pp 10 and two figures in PS forma
Methylation study of a population environmentally exposed to arsenic in drinking water.
Methylation is considered the detoxification pathway for inorganic arsenic (InAs), an established human carcinogen. Urinary speciation analysis is used to assess the distribution of metabolites [monomethylarsonate (MMA), dimethylarsinate (DMA), and unmethylated arsenic (InAs)], as indicators of methylation capacity. We conducted a large biomarker study in northern Chile of a population chronically exposed to high levels of arsenic in drinking water. We report the results of the methylation study, which focused on the effects of exposure and other variables on the percent InAs, MMA, DMA, and the ratio of MMA to DMA in urine. The study consisted of 122 people in a town with arsenic water levels around 600 micrograms/l and 98 participants in a neighboring town with arsenic levels in water of about 15 micrograms/l. The corresponding mean urinary arsenic levels were 580 micrograms/l and 60 micrograms/l, of which 18.4% and 14.9% were InAs, respectively. The main differences were found for MMA:DMA; exposure, smoking, and being male were associated with higher MMA:DMA, while longer residence, Atacameño ethnicity, and being female were associated with lower MMA:DMA. Together, these variables explained about 30% of the variability in MMA:DMA. Overall, there was no evidence of a threshold for methylation capacity, even at very high exposures, and the interindividual differences were within a much wider range than those attributed to the variables investigated. The differences in percent InAs were small and within the ranges of other studies of background exposure levels. The biological significance of MMA:DMA, which was more than 1.5 times greater in the exposed group, and its relationship to sex, length of exposure, and ethnicity need further investigation because its relevance to health risk is not clear
Arsenic methylation patterns before and after changing from high to lower concentrations of arsenic in drinking water.
Inorganic arsenic (In-As), an occupational and environmental human carcinogen, undergoes biomethylation to monomethylarsonate (MMA) and dimethylarsinate (DMA). It has been proposed that saturation of methylation capacity at high exposure levels may lead to a threshold for the carcinogenicity of In-As. The relative distribution of urinary In-As, MMA, and DMA is used as a measure of human methylation capacity. The most common pathway for elevated environmental exposure to In-As worldwide is through drinking water. We conducted a biomarker study in northern Chile of a population chronically exposed to water naturally contaminated with high arsenic content (600 micrograms/l). In this paper we present the results of a prospective follow-up of 73 exposed individuals, who were provided with water of lower arsenic content (45 micrograms/l) for 2 months. The proportions of In-As, MMA, and DMA in urine were compared before and after intervention, and the effect of other factors on the distribution of arsenic metabolites was also analyzed. The findings of this study indicate that the decrease in arsenic exposure was associated with a small decrease in the percent In-As in urine (from 17.8% to 14.6%) and in the MMA/DMA ratio (from 0.23 to 0.18). Other factors such as smoking, gender, age, years of residence, and ethnicity were associated mainly with changes in the MMA/DMA ratio, with smoking having the strongest effect. Nevertheless, the factors investigated accounted for only about 20% of the large interindividual variability observed. Genetic polymorphisms in As-methylating enzymes and other co-factors are likely to contribute to some of the unexplained variation. The changes observed in the percent In-As and in the MMA/DMA ratio do not support an exposure-based threshold for arsenic methylation in humans
Representations of the Canonical group, (the semi-direct product of the Unitary and Weyl-Heisenberg groups), acting as a dynamical group on noncommuting extended phase space
The unitary irreducible representations of the covering group of the Poincare
group P define the framework for much of particle physics on the physical
Minkowski space P/L, where L is the Lorentz group. While extraordinarily
successful, it does not provide a large enough group of symmetries to encompass
observed particles with a SU(3) classification. Born proposed the reciprocity
principle that states physics must be invariant under the reciprocity transform
that is heuristically {t,e,q,p}->{t,e,p,-q} where {t,e,q,p} are the time,
energy, position, and momentum degrees of freedom. This implies that there is
reciprocally conjugate relativity principle such that the rates of change of
momentum must be bounded by b, where b is a universal constant. The appropriate
group of dynamical symmetries that embodies this is the Canonical group C(1,3)
= U(1,3) *s H(1,3) and in this theory the non-commuting space Q= C(1,3)/
SU(1,3) is the physical quantum space endowed with a metric that is the second
Casimir invariant of the Canonical group, T^2 + E^2 - Q^2/c^2-P^2/b^2 +(2h
I/bc)(Y/bc -2) where {T,E,Q,P,I,Y} are the generators of the algebra of
Os(1,3). The idea is to study the representations of the Canonical dynamical
group using Mackey's theory to determine whether the representations can
encompass the spectrum of particle states. The unitary irreducible
representations of the Canonical group contain a direct product term that is a
representation of U(1,3) that Kalman has studied as a dynamical group for
hadrons. The U(1,3) representations contain discrete series that may be
decomposed into infinite ladders where the rungs are representations of U(3)
(finite dimensional) or C(2) (with degenerate U(1)* SU(2) finite dimensional
representations) corresponding to the rest or null frames.Comment: 25 pages; V2.3, PDF (Mathematica 4.1 source removed due to technical
problems); Submitted to J.Phys.
Fermion Pairing Dynamics in the Relativistic Scalar Plasma
Using many-body techniques we obtain the time-dependent Gaussian
approximation for interacting fermion-scalar field models. This method is
applied to an uniform system of relativistic spin-1/2 fermion field coupled,
through a Yukawa term, to a scalar field in 3+1 dimensions, the so-called
quantum scalar plasma model. The renormalization for the resulting Gaussian
mean-field equations, both static and dynamical, are examined and initial
conditions discussed. We also investigate solutions for the gap equation and
show that the energy density has a single minimum.Comment: 21 pages, latex, 4 postscript figures, new sections, some literary
changes, notation corrections, accepted for publication in Phys. Rev
- …