500 research outputs found
Rising-plate rheometer
Technique eliminates hazards of handling propellants and permits determination of structure index of gel by remote control. Rheometer weighs cone of propellant gel which remains on a disc that has been slowly pulled out of the gel
Cryogenic gel flow viscometer
Coiled section of tubing measures viscous properties of gelled cryogenic propellants under conditions closely resembling flow in rocket engine systems. Characteristic flow curve provides data necessary for the design of prototype hardware systems using the liquid or gel of interest
The role of 1,25-dihydroxyvitamin D in the inhibition of bone formation induced by skeletal unloading
Skeletal unloading results in osteopenia. To examine the involvement of vitamin D in this process, the rear limbs of growing rats were unloaded and alterations in bone calcium and bone histology were related to changes in serum calcium (Ca), inorganic phosphorus (P sub i), 25-hydroxyvitamin D (25-OH-D), 24,25-dihydroxyvitamin D (24,25(OH)2D and 1,25-dihydroxyvitamin D (1,25(OH)2D. Acute skeletal unloading induced a transitory inhibition of Ca accumulation in unloaded bones. This was accompanied by a transitory rise in serum Ca, a 21% decrease in longitudinal bone growth (P 0.01), a 32% decrease in bone surface lined with osteoblasts (P .05), no change in bone surface lined with osteoclasts and a decrease in circulating (1,25(OH)2D. No significant changes in the serum concentrations of P sub i, 25-OH-D or 24,25(OH)2D were observed. After 2 weeks of unloading, bone Ca stabilized at approximately 70% of control and serum Ca and 1,25(OH)2D returned to control values. Maintenance of a constant serum 1,25(OH)2D concentration by chronic infusion of 1,25(OH)2D (Alza osmotic minipump) throughout the study period did not prevent the bone changes induced by acute unloading. These results suggest that acute skeletal unloading in the growing rat produces a transitory inhibition of bone formation which in turn produces a transitory hypercalcemia
Behavioral Adaptations of Female Mice on the International Space Station
Adult female mice were sent to the International Space Station (ISS) as part of an early life science mission utilizing NASA's Rodent Habitat. Its primary purpose was to provide further insight into the influence of a microgravity environment on various aspects of mammalian physiology and well-being as part of an ongoing program of research aimed ultimately at understanding and ameliorating the deleterious influences of space on the human body. The present study took advantage of video collected from fixed, in-flight cameras within the habitat itself, to assess behavioral adaptations observed among in-flight mice aboard the ISS and differences in behavior with respect to a control group on the ground. Data collection consisted of several behavioral measures recorded by a trained observer with the assistance of interactive behavior analysis software. Specific behavioral measures included frequencies of conspecific interactionsociability, time spent feeding and conducting hygienic behavior, and relative durations of thigmotactic behavior, which is commonly used as an index of anxiety. Data were used to test tentative hypotheses that such behaviors differ significantly across mice under microgravity versus 1g conditions, and the assumption that the novel experience of microgravity itself may represent an initially anxiogenic stimulus which an animal will eventually acclimate to, perhaps through habituation
Analysis of High-order Social Interaction of Female Mice on the International Space Station
Social interactions are adaptive responses to environmental pressures that have evolved to facilitate the success of individual animals and their progeny. Quantifying social behavior in social animals is therefore one method of evaluating an animal's health, wellbeing and their adjustment to changes in their environment. The interaction between environment and animal can influence numerous other physiological and psychological responses that may enhance, deter or shift an animals social paradigm. For this study, we utilized flight video from the Rodent Research Hardware and Operations Validation mission (Rodent Research-1; RR1) on the International Space Station (ISS). Female mice spent 37 days in microgravity on the ISS and video was captured during the final 33 days. In a previous analysis of individual behavior, we also reported an observed spontaneous ambulatory behavior which we termed circling or 'race tracking,' and we anecdotally observed an increase in group organization around this behavior. In this analysis we further examined this behavior, and other social interactions, to determine if (1) animals joining in on this behavior were induced by other cohort members already participating in this circling behavior, (2) rates of joining varied by number already participating
Neutrophil-to-Lymphocyte Ratio: A Biomarker to Monitor the Immune Status of Astronauts
A comprehensive understanding of spaceflight factors involved in immune dysfunction and the evaluation of biomarkers to assess in-flight astronaut health are essential goals for NASA. An elevated neutrophil-to-lymphocyte ratio (NLR) is a potential biomarker candidate, as leukocyte differentials are altered during spaceflight. In the reduced gravity environment of space, rodents and astronauts displayed elevated NLR and granulocyte-to-lymphocyte ratios (GLR), respectively. To simulate microgravity using two well-established ground-based models, we cultured human whole blood-leukocytes in high-aspect rotating wall vessels (HARV-RWV) and used hindlimb unloaded (HU) mice. Both HARV-RWV simulation of leukocytes and HU-exposed mice showed elevated NLR profiles comparable to spaceflight exposed samples. To assess mechanisms involved, we found the simulated microgravity HARV-RWV model resulted in an imbalance of redox processes and activation of myeloperoxidase-producing inflammatory neutrophils, while antioxidant treatment reversed these effects. In the simulated microgravity HU model, mitochondrial catalase-transgenic mice that have reduced oxidative stress responses showed reduced neutrophil counts, NLR, and a dampened release of selective inflammatory cytokines compared to wildtype HU mice, suggesting simulated microgravity induced oxidative stress responses that triggered inflammation. In brief, both spaceflight and simulated microgravity models caused elevated NLR, indicating this as a potential biomarker for future in-flight immune health monitoring
Optimization of Single-Satellite Operational Schedules Towards Enhanced Communication Capacity
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97112/1/AIAA2012-4610.pd
Global anisotropy of arrival directions of ultra-high-energy cosmic rays: capabilities of space-based detectors
Planned space-based ultra-high-energy cosmic-ray detectors (TUS, JEM-EUSO and
S-EUSO) are best suited for searches of global anisotropies in the distribution
of arrival directions of cosmic-ray particles because they will be able to
observe the full sky with a single instrument. We calculate quantitatively the
strength of anisotropies associated with two models of the origin of the
highest-energy particles: the extragalactic model (sources follow the
distribution of galaxies in the Universe) and the superheavy dark-matter model
(sources follow the distribution of dark matter in the Galactic halo). Based on
the expected exposure of the experiments, we estimate the optimal strategy for
efficient search of these effects.Comment: 19 pages, 7 figures, iopart style. v.2: discussion of the effect of
the cosmic magnetic fields added; other minor changes. Simulated UHECR
skymaps available at http://livni.inr.ac.ru/UHECRskymaps
“The end of The Dreyfus affair”: (Post)Heideggerian meditations on man, machine and meaning
In this paper, the possibility of developing a Heideggerian solution to the Schizophrenia Problem associated with cognitive technologies is investigated. This problem arises as a result of the computer bracketing emotion from cognition during human-computer interaction and results in human psychic self-amputation. It is argued that in order to solve the Schizophrenia Problem, it is necessary to first solve the 'hard problem' of consciousness since emotion is at least partially experiential. Heidegger's thought, particularly as interpreted by Hubert Dreyfus, appears relevant in this regard since it ostensibly provides the basis for solving the 'hard problem' via the construction of artificial systems capable of the emergent generation of conscious experience. However, it will be shown that Heidegger's commitment to a non-experiential conception of nature renders this whole approach problematic, thereby necessitating consideration of alternative, post-Heideggerian approaches to solving the Schizophrenia Problem
Compact Symmetric Objects -- III Evolution of the High-Luminosity Branch and a Possible Connection with Tidal Disruption Events
We use a sample of 54 Compact Symmetric Objects (CSOs) to confirm that there
are two unrelated CSO classes: an edge-dimmed, low-luminosity class (CSO~1),
and an edge-brightened, high-luminosity class (CSO~2). Using blind tests, we
show that CSO~2s consist of three sub-classes: CSO 2.0, having prominent
hot-spots at the leading edges of narrow jets and/or narrow lobes; CSO~2.2,
without prominent hot-spots, and with broad jets and/or lobes; and CSO~2.1,
which exhibit mixed properties. Most CSO 2s do not evolve into larger
jetted-AGN, but spend their whole life-cycle as CSOs of size 500 pc
and age 5000 yr. The minimum energies needed to produce the radio
luminosity and structure in CSO~2s range from to
. We show that the transient nature of most CSO~2s, and
their birthrate, can be explained through ignition in the tidal disruption
events of giant stars. We also consider possibilities of tapping the spin
energy of the supermassive black hole, and tapping the energy of the accretion
disk. Our results demonstrate that CSOs constitute a large family of AGN in
which we have thus far studied only the brightest. More comprehensive CSO
studies, with higher sensitivity, resolution, and dynamic range, will
revolutionize our understanding of AGN and the central engines that power them.Comment: 44 pages, 16 figures, 9 tables, accepted for publicatio
- …