2,592 research outputs found

    The Complexity of Routing with Few Collisions

    Full text link
    We study the computational complexity of routing multiple objects through a network in such a way that only few collisions occur: Given a graph GG with two distinct terminal vertices and two positive integers pp and kk, the question is whether one can connect the terminals by at least pp routes (e.g. paths) such that at most kk edges are time-wise shared among them. We study three types of routes: traverse each vertex at most once (paths), each edge at most once (trails), or no such restrictions (walks). We prove that for paths and trails the problem is NP-complete on undirected and directed graphs even if kk is constant or the maximum vertex degree in the input graph is constant. For walks, however, it is solvable in polynomial time on undirected graphs for arbitrary kk and on directed graphs if kk is constant. We additionally study for all route types a variant of the problem where the maximum length of a route is restricted by some given upper bound. We prove that this length-restricted variant has the same complexity classification with respect to paths and trails, but for walks it becomes NP-complete on undirected graphs

    Mapping the MIS Curriculum Based on Critical Skills of New Graduates: An Empirical Examination of IT Professionals

    Get PDF
    MIS curricula research almost always focuses on either curriculum issues or the critical skills required of new MIS graduates, rarely both. This study examines both by determining the critical skills required of new graduates, from the perspective of IT professionals in the field, then uniquely mapping those skills into a comprehensive yet flexible MIS curriculum that could be used by any MIS department. Using a sample of 153 IT professionals from six organizations in the mid-South, the results are somewhat surprising. While personal attributes are important, IT workers clearly believe that technology skills are a critical component of an MIS education, in particular database skills (including SQL), computer languages (at least two), and web design proficiency. Results also stress the importance of foundational concepts and knowledge, preparing new graduates for careers and not merely their first job. The impact for MIS curriculum designers is clear: make the major technically robust while simultaneously providing a core foundation in both business and IT. The study strongly suggests that concentrations (two or more sequenced courses) are a must; four are recommended as a result of this study: programming/architecture, telecommunications/networks, database, and web design/e-commerce. Implications are discussed

    The Multiple Access Testbed for Research in Innovative Communications Systems (MATRICS)

    Get PDF
    NASA is presently in the planning stages for the next generation earth relay architecture which will transition to Ka-band services in a new, potentially commercially-driven architecture, by 2040. To assess the performance of various technologies and architectures, the Multiple Access Testbed for Research in Innovative Communications Systems (The MATRICS), is being developed to offer a flexible emulation platform for system-level architecture and technology assessments of candidate next generation Ka-band relay and user terminal solutions. In this paper, we describe the architecture and setup of the MATRICS, which is presently housed in GRCs 25-ft anechoic chamber

    Dimension Spectra of Lines

    Full text link
    This paper investigates the algorithmic dimension spectra of lines in the Euclidean plane. Given any line L with slope a and vertical intercept b, the dimension spectrum sp(L) is the set of all effective Hausdorff dimensions of individual points on L. We draw on Kolmogorov complexity and geometrical arguments to show that if the effective Hausdorff dimension dim(a, b) is equal to the effective packing dimension Dim(a, b), then sp(L) contains a unit interval. We also show that, if the dimension dim(a, b) is at least one, then sp(L) is infinite. Together with previous work, this implies that the dimension spectrum of any line is infinite

    Simultaneous Water Vapor and Dry Air Optical Path Length Measurements and Compensation with the Large Binocular Telescope Interferometer

    Get PDF
    The Large Binocular Telescope Interferometer uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 μ\mum). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feedforward approach to stabilize the path length fluctuations seen by the LBTI nuller.Comment: SPIE conference proceeding

    Systems of Linear Equations over F2\mathbb{F}_2 and Problems Parameterized Above Average

    Full text link
    In the problem Max Lin, we are given a system Az=bAz=b of mm linear equations with nn variables over F2\mathbb{F}_2 in which each equation is assigned a positive weight and we wish to find an assignment of values to the variables that maximizes the excess, which is the total weight of satisfied equations minus the total weight of falsified equations. Using an algebraic approach, we obtain a lower bound for the maximum excess. Max Lin Above Average (Max Lin AA) is a parameterized version of Max Lin introduced by Mahajan et al. (Proc. IWPEC'06 and J. Comput. Syst. Sci. 75, 2009). In Max Lin AA all weights are integral and we are to decide whether the maximum excess is at least kk, where kk is the parameter. It is not hard to see that we may assume that no two equations in Az=bAz=b have the same left-hand side and n=rankAn={\rm rank A}. Using our maximum excess results, we prove that, under these assumptions, Max Lin AA is fixed-parameter tractable for a wide special case: m2p(n)m\le 2^{p(n)} for an arbitrary fixed function p(n)=o(n)p(n)=o(n). Max rr-Lin AA is a special case of Max Lin AA, where each equation has at most rr variables. In Max Exact rr-SAT AA we are given a multiset of mm clauses on nn variables such that each clause has rr variables and asked whether there is a truth assignment to the nn variables that satisfies at least (12r)m+k2r(1-2^{-r})m + k2^{-r} clauses. Using our maximum excess results, we prove that for each fixed r2r\ge 2, Max rr-Lin AA and Max Exact rr-SAT AA can be solved in time 2O(klogk)+mO(1).2^{O(k \log k)}+m^{O(1)}. This improves 2O(k2)+mO(1)2^{O(k^2)}+m^{O(1)}-time algorithms for the two problems obtained by Gutin et al. (IWPEC 2009) and Alon et al. (SODA 2010), respectively

    Parameterized complexity of the MINCCA problem on graphs of bounded decomposability

    Full text link
    In an edge-colored graph, the cost incurred at a vertex on a path when two incident edges with different colors are traversed is called reload or changeover cost. The "Minimum Changeover Cost Arborescence" (MINCCA) problem consists in finding an arborescence with a given root vertex such that the total changeover cost of the internal vertices is minimized. It has been recently proved by G\"oz\"upek et al. [TCS 2016] that the problem is FPT when parameterized by the treewidth and the maximum degree of the input graph. In this article we present the following results for the MINCCA problem: - the problem is W[1]-hard parameterized by the treedepth of the input graph, even on graphs of average degree at most 8. In particular, it is W[1]-hard parameterized by the treewidth of the input graph, which answers the main open problem of G\"oz\"upek et al. [TCS 2016]; - it is W[1]-hard on multigraphs parameterized by the tree-cutwidth of the input multigraph; - it is FPT parameterized by the star tree-cutwidth of the input graph, which is a slightly restricted version of tree-cutwidth. This result strictly generalizes the FPT result given in G\"oz\"upek et al. [TCS 2016]; - it remains NP-hard on planar graphs even when restricted to instances with at most 6 colors and 0/1 symmetric costs, or when restricted to instances with at most 8 colors, maximum degree bounded by 4, and 0/1 symmetric costs.Comment: 25 pages, 11 figure
    corecore