1,216 research outputs found

    Inhibition of Human Metapneumovirus Binding to Heparan Sulfate Blocks Infection in Human Lung Cells and Airway Tissues

    Get PDF
    Human metapneumovirus (HMPV), a recently discovered paramyxovirus, infects nearly 100% of the world population and causes severe respiratory disease in infants, the elderly, and immunocompromised patients. We previously showed that HMPV binds heparan sulfate proteoglycans (HSPGs) and that HMPV binding requires only the viral fusion (F) protein. To characterize the features of this interaction critical for HMPV binding and the role of this interaction in infection in relevant models, we utilized sulfated polysaccharides, heparan sulfate mimetics, and occluding compounds. Iota-carrageenan demonstrated potent anti-HMPV activity by inhibiting binding to lung cells mediated by the F protein. Furthermore, analysis of a minilibrary of variably sulfated derivatives of Escherichia coli K5 polysaccharide mimicking the HS structure revealed that the highly O-sulfated K5 polysaccharides inhibited HMPV infection, identifying a potential feature of HS critical for HMPV binding. The peptide dendrimer SB105-A10, which binds HS, reduced binding and infection in an F-dependent manner, suggesting that occlusion of HS at the target cell surface is sufficient to prevent infection. HMPV infection was also inhibited by these compounds during apical infection of polarized airway tissues, suggesting that these interactions take place during HMPV infection in a physiologically relevant model. These results reveal key features of the interaction between HMPV and HS, supporting the hypothesis that apical HS in the airway serves as a binding factor during infection, and HS modulating compounds may serve as a platform for potential antiviral development

    Role of Sequence and Structure of the Hendra Fusion Protein Fusion Peptide in Membrane Fusion

    Get PDF
    Viral fusion proteins are intriguing molecular machines that undergo drastic conformational changes to facilitate virus-cell membrane fusion. During fusion a hydrophobic region of the protein, termed the fusion peptide (FP), is inserted into the target host cell membrane, with subsequent conformational changes culminating in membrane merger. Class I fusion proteins contain FPs between 20 and 30 amino acids in length that are highly conserved within viral families but not between. To examine the sequence dependence of the Hendra virus (HeV) fusion (F) protein FP, the first eight amino acids were mutated first as double, then single, alanine mutants. Mutation of highly conserved glycine residues resulted in inefficient F protein expression and processing, whereas substitution of valine residues resulted in hypofusogenic F proteins despite wild-type surface expression levels. Synthetic peptides corresponding to a portion of the HeV F FP were shown to adopt an α-helical secondary structure in dodecylphosphocholine micelles and small unilamellar vesicles using circular dichroism spectroscopy. Interestingly, peptides containing point mutations that promote lower levels of cell-cell fusion within the context of the whole F protein were less α-helical and induced less membrane disorder in model membranes. These data represent the first extensive structure-function relationship of any paramyxovirus FP and demonstrate that the HeV F FP and potentially other paramyxovirus FPs likely require an α-helical structure for efficient membrane disordering and fusion

    An assessment of pulse transit time for detecting heavy blood loss during surgical operation

    Get PDF
    Copyright @ Wang et al.; Licensee Bentham Open. This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.The main contribution of this paper is the use of non-invasive measurements such as electrocardiogram (ECG) and photoplethysmographic (PPG) pulse oximetry waveforms to develop a new physiological signal analysis technique for detecting blood loss during surgical operation. Urological surgery cases were considered as the control group due to its generality, and cardiac surgery as experimental group since it involves blood loss and water supply. Results show that the control group has the tendency of a reduction of the pulse transient time (PTT), and this indicates an increment in the blood flow velocity changes from slow to fast. While for the experimental group, the PTT indicates high values during blood loss, and low values during water supply. Statistical analysis shows considerable differences (i.e., P <0.05) between both groups leading to the conclusion that PTT could be a good indicator for monitoring patients' blood loss during a surgical operation.The National Science Council (NSC) of Taiwan and the Centre for Dynamical Biomarkers and Translational Medicine, National Central University, Taiwan

    Perception of Nuclear Energy and Coal in France and the Netherlands

    Get PDF
    This study focuses on the perception of large scale application of nuclear energy and coal in the Netherlands and France. The application of these energy-sources and the risks and benefits are judged differently by various group in society. In Europe, France has the highest density of nuclear power plants and the Netherlands has one of the lowest. In both countries scientists and social scientists completed a questionnaire assessing the perception of the large scale application of both energy sources. Furthermore, a number of variables relating to the socio cultural and political circumstances were measured. The results indicate that the French had a higher risk perception and a more negative attitude toward nuclear power than the Dutch. But they also assess the benefits of the use of nuclear power to be higher. Explanations for these differences are discussed

    Role of Local Excision for Suspected Regrowth in a Watch and Wait Strategy for Rectal Cancer

    Get PDF
    Simple Summary Rectal cancer patients with a clinical complete response to neoadjuvant treatment are eligible for Watch and Wait as an alternative to total mesorectal excision. However, in patients with local regrowth, major surgery is still the standard of care. The present study evaluates the role of local excision for suspected local regrowth in a large Watch and Wait cohort, in terms of long-term outcomes. This study shows excellent overall survival and a good organ preservation rate. Patients who developed locoregional recurrence after initial local excision for regrowth were all successfully treated with salvage surgery. This study shows that local excision can provide maintenance of organ preservation without an obvious compromise in surgical or oncological safety. Local excision for suspected regrowth in patients following Watch and Wait can be a safe alternative for total mesorectal excision in selected patients with a strong wish to preserve their rectum. Rectal cancer patients with a clinical complete response to neoadjuvant (chemo)radiation are eligible for Watch and Wait (W&W). For local regrowth, total mesorectal excision (TME) is considered the standard of care. This study evaluated local excision (LE) for suspected local regrowth. From 591 patients prospectively entered into a national W&W registry, 77 patients with LE for regrowth were included. Outcomes analyzed included histopathologic findings, locoregional recurrence, long-term organ preservation, and colostomy-free and overall survival. In total, 27/77 patients underwent early LE (= 6 months). Median follow-up was 53 (39-69) months. In 28/77 patients the LE specimen was histopathologically classified as ypT0 (including 9 adenomas); 11/77 were ypT1, and 38/77 were ypT2-3. After LE, 13/77 patients with ypT2-3 and/or irradical resection underwent completion TME. Subsequently, 14/64 patients without completion TME developed locoregional recurrence, and were successfully treated with salvage TME. Another 8/77 patients developed distant metastases. At 5 years, overall organ preservation was 63%, colostomy-free survival was 68%, and overall survival was 96%. There were no differences in outcomes between early or late LE. In W&W for rectal cancer, LE can be considered as an alternative to TME for suspected regrowth in selected patients who wish to preserve their rectum or avoid colostomy in distal rectal cancer

    Social influence in networks of practice: An analysis of organizational communication content

    Get PDF
    Networks of Practice (NoPs) facilitate knowledge sharing among geographically dispersed organization members. This research tests whether social influence in NoPs is reinforced by actors' embeddedness in practice (knowledge about informal content), organizational embeddedness (knowledge about formal organizational content), structural embeddedness (knowledge about who knows what), and relational embeddedness (knowledge about informal relationships). A full-fledged automated content analysis on all postings on four NoPs maintained by a multinational chemical company revealed four dimensions in communication content that largely coincide with the proposed embeddedness types. We measured social influence by assessing to what extent actors' use of uncommon language traits was adopted in the responses to the postings. Hypothesis testing revealed that network members who communicate about informal practice, and know who knows what, exert more social influence than others. The results suggest that network members' social influence is rooted in their utilitarian value for others, and not in their organizational or relational embeddedness. © The Author(s) 2011

    Evaluating a Prioritization Framework for Monitoring Chemicals of Emerging Concern in the Salish Sea Based on Lessons Learned from Western States Programs

    Get PDF
    We are now approaching a tipping point where priority pollutants may no longer be the primary driver of environmental impairment. Contaminants of Emerging Concern (CECs) present a challenge to environmental monitoring and management programs because the rapidly emerging state of the knowledge requires an adaptive and transparent prioritization framework. The state of the science, treatment technologies, and regulatory policies are not well understood, CEC quantification is challenging and expensive, and the management approach is not simply a concentration based criteria, but may include biological end-points. The need for a shared responsibility and leveraging across many programs was evaluated through a series of webinars with other programs studying CECs including Columbia River Toxics Program, Washington Department of Ecology, Oregon Department of Environmental Quality, Southern California Coastal Waters Research Project, and San Francisco Bay Regional Monitoring Program. The lessons learned were articulated into a 10-step prioritization framework. The critical lesson learned included: 1) Develop clear objectives, definitions of CECs, and target audience; 2) Identify conceptual models to provide a clear target for the appropriate media to monitor for various chemicals and at what frequency; 3) Define the chemical characteristics in terms of usage, persistence, bioaccumulation, and toxicity; 4) Develop a target CEC analyte list; 5) Screen and rank the CEC analyte list based on chemical characteristics, environmental concentrations, and state of the science; 6) Create a transparent prioritization process to include input from key stakeholders and end users that builds consensus during development; 7) Prioritize the chemical categories by using specific metrics such as available data, status of analytical methods, available thresholds, costs, programmatic concerns and opportunities for leveraging with other programs; 8) Identify potential biological end-points and other indicators; 9) Create a formal review process to support data and knowledge sharing, adaptively manage prioritization to include new science and critical research gaps; and 10) Develop a working group to facilitate leveraging of funds across many programs

    Epitope Addition and Ablation via Manipulation of a Dengue Virus Serotype 1 Infectious Clone

    Get PDF
    ABSTRACT Despite the clinical relevance, dengue virus (DENV) research has been hampered by the absence of robust reverse genetic systems to manipulate the viral serotypes for propagation and generation of mutant viruses. In this article, we describe application of an infectious clone system for DENV serotype 1 (DENV1). Similar to previous clones in both flaviviruses and coronaviruses, the approach constructs a panel of contiguous cDNAs that span the DENV genome and can be systematically and directionally assembled to produce viable, full-length viruses. Comparison of the virus derived from the infectious clone with the original viral isolate reveals identical sequence, comparable endpoint titers, and similar focus staining. Both focus-forming assays and percent infection by flow cytometry revealed overlapping replication levels in two different cell types. Moreover, serotype-specific monoclonal antibodies (MAbs) bound similarly to infectious clone and the natural isolate. Using the clone, we were able to insert a DENV4 type-specific epitope recognized by primate MAb 5H2 into envelope (E) protein domain I (EDI) of DENV1 and recover a viable chimeric recombinant virus. The recombinant DENV1 virus was recognized and neutralized by the DENV4 type-specific 5H2 MAb. The introduction of the 5H2 epitope ablated two epitopes on DENV1 EDI recognized by human MAbs (1F4 and 14C10) that strongly neutralize DENV1. Together, the work demonstrates the utility of the infectious clone and provides a resource to rapidly manipulate the DENV1 serotype for generation of recombinant and mutant viruses. IMPORTANCE Dengue viruses (DENVs) are significant mosquito-transmitted pathogens that cause widespread infection and can lead to severe infection and complications. Here we further characterize a novel and robust DENV serotype 1 (DENV1) infectious clone system that can be used to support basic and applied research. We demonstrate how the system can be used to probe the antigenic relationships between strains by creating viable recombinant viruses that display or lack major antibody epitopes. The DENV1 clone system and recombinant viruses can be used to analyze existing vaccine immune responses and inform second-generation bivalent vaccine designs
    • 

    corecore