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Abstract
Bats of different species play a major role in the emergence and transmission of highly path-

ogenic viruses including Ebola virus, SARS-like coronavirus and the henipaviruses. These

viruses require proteolytic activation of surface envelope glycoproteins needed for entry,

and cellular cathepsins have been shown to be involved in proteolysis of glycoproteins from

these distinct virus families. Very little is currently known about the available proteases in

bats. To determine whether the utilization of cathepsins by bat-borne viruses is related to

the nature of proteases in their natural hosts, we examined proteolytic processing of several

viral fusion proteins in cells derived from two fruit bat species, Pteropus alecto and Rouset-
tus aegyptiacus. Our work shows that fruit bat cells have homologs of cathepsin and furin

proteases capable of cleaving and activating both the cathepsin-dependent Hendra virus F

and the furin-dependent parainfluenza virus 5 F proteins. Sequence analysis comparing

Pteropus alecto furin and cathepsin L to proteases from other mammalian species showed

a high degree of conservation; however significant amino acid variation occurs at the

C-terminus of Pteropus alecto furin. Further analysis of furin-like proteases from fruit bats

revealed that these proteases are catalytically active and resemble other mammalian furins

in their response to a potent furin inhibitor. However, kinetic analysis suggests that differ-

ences may exist in the cellular localization of furin between different species. Collectively,

these results indicate that the unusual role of cathepsin proteases in the life cycle of bat-

borne viruses is not due to the lack of active furin-like proteases in these natural reservoir

species; however, differences may exist between furin proteases present in fruit bats com-

pared to furins in other mammalian species, and these differences may impact protease

usage for viral glycoprotein processing.
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Introduction
In the past twenty years, bats of different species have been recognized as important hosts of vi-
ruses from different families including rhabdoviruses [1–3], coronaviruses [4–9], filoviruses
[10–12], flaviviruses [13,14], orthomyxoviruses [15–17], paramyxoviruses [18,19] and others
[20,21]. Numerous studies have shown that bats not only harbor a large number of viruses, but
are also a major source for the emergence and transmission of viruses that cause highly patho-
genic infectious diseases in humans, most importantly Severe Acute Respiratory Syndrome-
like coronavirus (SARS-like CoV) [7], Ebola virus [10,22] and the henipaviruses, Hendra virus
[23–26] and Nipah virus [27–29], which are members of the paramyxovirus family. Hendra
virus first emerged in 1994 in Australia in an outbreak that occurred in horses [30], and more
than thirty subsequent outbreaks have occurred, with a total of four human deaths associated
with the virus infection [31,32]. Another closely related virus, Nipah virus was identified in
Malaysia in 1999 causing an outbreak of viral encephalitis [33]; with additional outbreaks
showing high mortality rates that reached 70%. Several species of bats within the genus Ptero-
pus, commonly known as flying foxes, have been confirmed as the natural primary reservoir of
henipaviruses [23,25,27,34–36]. Cedar virus, a novel henipavirus that does not seem to cause
clinical disease in several animals which are known to be susceptible to Hendra and Nipah vi-
ruses, was identified recently and also has Pteropus bats as its natural reservoir [37]. Recent evi-
dence suggests that henipaviruses are also present in non-Pteropus fruit bats in Africa [38,39].
Despite the important role of bats in the emergence of henipaviruses and other highly patho-
genic viruses, very little is known about the viral life cycle or virus-host interactions in this
natural reservoir.

Entry of henipaviruses into host cells requires fusion of the viral envelope with the cell
membrane. The fusion event is mediated by two glycoproteins present on the viral envelope,
the attachment protein, G, required for initial binding of the virus, and the fusion protein, F,
which drives subsequent fusion of the two membranes by undergoing a series of conformation-
al changes [40–42]. The fusion protein of paramyxoviruses is synthesized as an inactive precur-
sor F0 that is cleaved by host proteases into the fusogenically active disulfide-linked
heterodimer F1+F2. For the majority of paramyxoviruses, including measles virus [43], parain-
fluenza virus 5 (PIV5) [44] and Newcastle disease virus [45], this cleavage is mediated by the
protease furin in the medial- and trans-golgi network (TGN). For some paramyxoviruses, an
extracellular protease is responsible for the proteolytic activation (reviewed in [46]). However,
henipaviruses are unique in that they utilize the endosomal/lysosomal protease cathepsin L,
and in some cases cathepsin B, to cleave and activate the fusion protein [47,48]. This unusual
role of cathepsins in the henipavirus life cycle requires a complex trafficking pathway for the
activation of F protein in which the protein is synthesized and traffics to the plasma membrane
in the uncleaved precursor form, F0. The protein is then endocytosed, cleaved in the endosomal
compartments by cathepsin L or B and recycled back to the plasma membrane as the fusogeni-
cally active F1+F2 heterodimer [47–54]. The reason for this complex method of proteolytic acti-
vation remains unclear, but the cathepsin activation of henipavirus F proteins cannot be
functionally replaced by other proteases, as a Nipah F protein mutant containing trypsin- or
furin- cleavable sites displays reduced F processing [55]. Cleavage of the Hendra and Nipah F
proteins occurs at a monobasic cleavage site GDV-K/R [56,57]; however, mutagenesis studies
demonstrated that mutation of the basic residue at the cleavage site or of amino acids upstream
of this site did not eliminate F protein processing [57,58], contradictory to other viral fusion
proteins [59–62].

Cathepsins have been shown to be involved in the processing of several viral proteins. Ca-
thepsin L proteolysis of the spike protein S of SARS-CoV is necessary for membrane fusion
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activation [63]; in addition, Ebola virus utilizes cathepsin L and B for processing and priming
of the GP glycoprotein [64,65]. Interestingly, bats have been recently confirmed as the primary
reservoir for SARS-CoV [8], SARS-like CoV [7] and the filovirus Marburg virus [11], while se-
rological evidence suggests that Rousettus aegyptiacus fruit bats are potential reservoirs for
Ebola virus [66]. This raises the question of whether the unique utilization of cathepsins by
henipaviruses may be an evolutionary adaptation to the nature of proteases present in their
natural reservoirs, the fruit bats. To address this, we examined the proteolytic processing of the
cathepsin-dependant Hendra virus F protein and the furin-dependent PIV5 F in cells of two
species of fruit bats, Pteropus alecto and R. aegyptiacus. Our results show that cell lines from
fruit bats have both active cathepsin and furin-like proteases capable of cleaving and activating
viral fusion proteins. In addition, we demonstrate that the dependence of Hendra virus on ca-
thepsin L and vesicular trafficking for proteolytic processing of its fusion protein also occurs in
cells of its natural fruit bat reservoir. Comparison of amino acid sequences of P. alecto cathep-
sin L and furin proteases to those of different mammalian species revealed that both cathepsin
L and furin show a high degree of conservation among mammals but there are bat-specific
amino acid changes, primarily in the C-terminus of P. alecto furin. Closer examination of
furin-like proteases revealed that fruit bats have active furins that resemble other mammalian
furins in terms of activity and response to protease inhibitors, but our results suggest differ-
ences in intracellular localization of furin in fruit bats which may influence accessibility of viral
proteins to furin proteases in these natural reservoir hosts.

Materials and Methods

Cell lines and reagents
Vero cells, baby hamster kidney (BHK) cells and P. alecto bat cells derived from different organs,
Kidney (PaKi), brain (PaBr), lung (PaLu) and fetus (PaFe) [67] were grown in Dulbecco’s modi-
fied Eagle’s medium (DMEM; Gibco Invitrogen) supplemented with 10% fetal bovine serum
(FBS) and 1% penicillin and streptomycin. R. aegyptiacus fetus body cells (R06E) or head cells
(R05T) [68] were maintained in DMEM-F12 media (Gibco Invitrogen) supplemented with 10%
FBS and 500μg of gentamicin. A549 cells were grown in Roswell Park Memorial Institute medi-
um (RPMI; Lonza) supplemented with 10% FBS and 1% penicillin and streptomycin. BEAS-2B
cells, a human lung/bronchial epithelial cell line, obtained from ATCC were maintained in
BEGMmedium containing all the recommended supplements (Lonza). The protease inhibitor
E64d was obtained from Sigma, cathepsin L inhibitor I and furin inhibitor, decanoyl-RVKR-
chloromethylketone (dec-RVKR-CMK), were purchased from Calbiochem EMDMillipore.
Fluorogenic furin substrate was obtained from Calbiochem EMDMillipore.

Plasmids and antibodies
Hendra virus F and G coding sequences were subcloned into the pCAGGS mammalian expres-
sion plasmid as previously described [52]. pCAGGS vectors containing PIV5 F and HN genes
were kindly provided by Robert Lamb (Howard Hughes Medical Institute, Northwestern Uni-
versity). Polyclonal antibodies (commercially produced by GenemedCustomPeptide Antibody
Service, San Francisco, CA) to amino acid residues 526–539 or 516–529 in the cytoplasmic tails
of Hendra virus F or PIV5 F, respectively, were used to immunoprecipitate the F protein [52].

Expression of Hendra virus and PIV5 fusion proteins
Subconfluent monolayers of Vero cells and bat cells: R06E and PaKi were transfected with the
expression vectors pCAGGS-Hendra F or pCAGGS-PIV5 F, encoding the Hendra virus F or
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PIV5 F proteins, using Lipofectamine Plus (Life Technologies) according to manufacturer’s
protocol. Vero cells in 35-mm dishes were transfected with 2 μg of plasmid DNA, 6 μl of plus
reagent and 4 μl of lipofectamine in 0.8 ml of Opti-MEM (Gibco Invitrogen). The transfection
efficiency in bat cells in general was much lower than Vero cells, so transfections were per-
formed in 100mm dishes to allow for sufficient protein expression. For expression of fusion
proteins in bat cells, 12 μg of DNA, 18 μl of plus reagent, 12 μl of lipofectamine and 1.2 ml of
Opti-MEM (Gibco Invitrogen) were combined and added to cells grown in 100-mm dishes. At
3–4 hours post-transfection, cells were washed with phosphate buffered saline (PBS) and incu-
bated overnight at 37°C in DMEM or DMEM-F12 media supplemented with 10% FBS
and antibiotics.

Metabolic labeling and immunoprecipitation
Twenty-four hours post-transfection, cells were starved in cysteine- and methionine- deficient
DMEMmedia for 45 minutes followed by labeling in Tran35S-label (100 μCi/ml; Perkin Elmer,
Waltham, Massachusetts). To determine total expression of fusion proteins, cells were labeled
for 3 hours at 37°C and lysed immediately. For pulse chase experiments, cells were labeled for
30 minutes, washed twice with PBS, normal DMEM or DMEM-F12 media was then added,
and cells were chased for varying times. At the end of the chase periods, cells were washed and
lysed in radioimmunoprecipitation assay (RIPA) lysis buffer (100 mM Tris-HCl [pH 7.4], 150
mMNaCl, 0.1% SDS, 1% Triton X-100, 1% deoxycholic acid) containing 0.15 M NaCl and sup-
plemented with protease inhibitors. Lysates were then clarified by centrifugation at 136,000xg
for 15 minutes at 4°C and supernatants were immunoprecipitated with anti-peptide sera to the
F proteins and protein-A conjugated sepharose beads [69]. Immunoprecipitated proteins were
analyzed on 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and
visualized using the Typhoon imaging system (Amersham Biosciences/GE Healthcare Life Sci-
ences, New Jersey). ImageQuant TL (GE Healthcare, Piscataway, NJ) was used to determine
band densitometry and results were expressed as percent cleavage defined as F1/(F1+F0).

Syncytia assay
Vero cells or PaKi cells in 35-mm dishes were transiently transfected with Hendra virus F or
PIV5 F alone or in combination with the homotypic attachment protein (G or HN). The F:G/
HN ratio used was 1:3 for Hendra virus and 1:1 for PIV5. Twenty-four to 48 hours post trans-
fection, syncytia formation was examined and photographs were taken using a Nikon digital
camera mounted atop a Nikon TS100 microscope with 10x objective.

Furin-like enzyme activity
A furin-like enzyme activity assay on whole cell lysates was performed as described [70] with
minor modifications. 2×106 cells were collected, washed with PBS and lysed for 10 minutes on
ice in 200 μl of 5× lysis/reaction buffer (500 mMHEPES, pH 7.0, 2.5% Triton X-100, 5 mM cal-
cium chloride, 5 mM β-mercaptoethanol). Cells were then sheared with a 23-gauge needle fol-
lowed by centrifugation at 13,000xg for 10 minutes at 4°C, and supernatants were stored at
-80°C. For determination of furin-like enzyme activity, cell lysates were diluted 2 fold in 5x
lysis buffer. In a black opaque 96-well plate, 20 μl of cell lysates were added to 70 μl of ultrapure
water and the plate was incubated for 15 minutes at 37°C. After incubation, 10 μl of 1 mM
furin fluorogenic substrate, previously pre-warmed at 37°C for 30 minutes, was added and
fluorescent intensity was immediately measured on a SpectraMax Gemini XPS plate reader
(Molecular Devices) every 3 minutes for 240 minutes with excitation at 355 nm and emission
at 460 nm. For determination of the effect of a furin inhibitor on furin-like activity, cell lysates
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were incubated with increasing concentrations of the inhibitor for 3 hours at 37°C and cells
were then processed for the enzyme activity assay as mentioned above.

Multiple sequence alignment of mammalian furin and cathepsin L
Sequences of P. alecto furin and cathepsin L were identified using BLAST searches of the P.
alecto genome and transcriptome databases generated previously [71,72]. Sequences of other
mammalian proteases were obtained from GenBank. Multiple sequence alignment of mamma-
lian proteases was generated using ClustalW [73]. P. alecto bat furin or P. alecto cathepsin L
was used as a standard reference for amino acid numbering.

Results

The Hendra virus and PIV5 fusion proteins are efficiently cleaved in fruit
bat cells
Several cell lines derived from different bat species have been established, providing a valuable
tool for in vitro studies of virus life cycles in their natural reservoir. In this study, we utilized
cells previously established from two pteropid fruit bats, P. alecto [67] and R. aegyptiacus [68].
P. alecto cells derived from different tissues were shown to be permissive to henipavirus replica-
tion and cells derived R. aegyptiacus permitted filovirus infection, indicating that these cells
contain the necessary host factors required for virus replication [67,74]. However, very little is
currently known about the nature of proteases present in these bat species. To assess the ability
of pteropus host cell proteases to proteolytically process viral fusion proteins, we examined the
proteolytic processing of the cathepsin-dependent Hendra virus F protein and the furin-depen-
dent PIV5 F protein in P. alecto kidney cells (PaKi) and R. aegyptiacus cells obtained from body
tissues (R06E). Bat cells and Vero cells, used as a control, were transiently transfected to express
the Hendra virus F or PIV5 F protein and metabolically labeled. The fusion proteins were subse-
quently immunoprecipitated and analyzed on 10% SDS-PAGE. As seen in Fig. 1A, both fusion
proteins were proteolytically processed into the F1 and F2 heterodimer in R06E and PaKi cells.
This indicates that cells from both P. alecto and R. aegyptiacus have active cathepsin-like and
furin-like proteases capable of cleaving the Hendra viurs and PIV5 F proteins. To assess wheth-
er the processed proteins were fusogenically active, syncytia assays were performed. Syncytia
formation was not observed in the presence of the attachment (Hendra G or PIV5 HN) protein
alone, consistent with the role of the F protein in promoting fusion. However, syncytia were ob-
served in all three cell types upon expression of the fusion and attachment proteins of either
Hendra virus or PIV5 (Fig. 1B, arrows). Syncytia formed in R06E and PaKi were smaller in size
compared to syncytia seen in Vero cells and the total number of syncytia observed in the two
fruit bat cell lines was less than in Vero cells, likely as a result of lower transfection efficiency in
bat cells versus Vero cells. These results indicate that P. alecto and R. aegyptiacus fruit bat cells
can cleave and activate cathepsin-dependent and furin-dependent viral fusion proteins.

Kinetics of PIV5 F processing differs between Vero cells and fruit bat
cells
The Hendra virus fusion protein undergoes a complex trafficking pathway for cleavage and ac-
tivation [47,51,52], while PIV5 F is cleaved by furin as it passes through the TGN [44]. It has
been previously shown that the majority of Hendra virus F cleavage occurs within 4 hours of
protein synthesis [52]. To compare the kinetics of processing of Hendra virus and PIV5 F pro-
teins in bat cells versus Vero cells, cleavage was monitored by pulse chase analysis. Vero cells
or fruit bat cells were labeled for 30 minutes, washed and incubated for 0 to 4 hours in chase
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media. Directly following labeling (0 hours), almost only the uncleaved F0 form of Hendra
virus F was detected in all cell types, while a small percentage of PIV5 F0 was cleaved to F1 in
bat PaKi and R06E cells (Fig. 2A). Cleavage of F0 to F1 increased during the 4 hour chase period
in all cell types for both Hendra virus F and PIV5 F. For Hendra virus F, R06E and PaKi cells
showed similar processing kinetics to Vero cells, with no significant difference in percentage of
cleavage observed at any point following synthesis. In contrast, PIV5 F was cleaved more rapid-
ly in both bat cell types compared to Vero cells. After one hour of synthesis, more than 40% of
PIV5 F0 had been proteolytically processed in both PaKi and R06E fruit bat cell lines, a signifi-
cantly higher level than the 17% cleavage observed in Vero cells (Fig. 2B). As similar processing
kinetics were observed for Hendra virus F protein, it is unlikely that the differences observed
for PIV5 F are due to changes in the rate intracellular of trafficking in fruit bat cells. Cleavage
of PIV5 F by furin generally occurs in secretory vesicles budding from the TGN. Thus, these
data suggest a potential difference either in the intracellular localization or expression of furin
present in PaKi and R06E cells compared to Vero cells.

Fig 1. Bat cells cleave cathepsin-dependant Hendra virus F and furin-dependant PIV5 F. (A) Cells were
transfected with pCAGGS-Hendra virus F or pCAGGS-PIV5 F and 18–24 hours post transfection,
metabolically labeled with Tran 35S for 3 hours at 37°C. Following labeling, cells were lysed and
immunoprecipitated. Proteins were analyzed by 10%SDS-PAGE and visualized by autoradiography. (B)
Cells were transfected with Hendra virus F or PIV5 F alone or in combination with Hendra virus G or PIV5 HN.
24 to 48 hours post transfection, cells were washed and images were taken using a Nikon digital camera
mounted atop a Nikon TS100 microscope with 10x objective. Arrows indicate syncytia.

doi:10.1371/journal.pone.0115736.g001
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Hendra virus F cleavage in fruit bat cells depends on vesicular trafficking
and cathepsin L
The requirements for the activation of henipavirus fusion proteins differ remarkably from
other paramyxovirus F proteins. Cleavage of Hendra and Nipah F proteins occurs by the action
of cathepsin L at a monobasic cleavage site GDV-K/R [56,57]. While the kinetics of processing
in bat cells were consistent with cleavage following trafficking to the endosome (Fig. 2), the

Fig 2. Kinetics of PIV5 Fusion protein cleavage is faster in bat cells compared to Vero cells. (A) Cells transiently transfected with pCAGGS-Hendra
virus F or pCAGGS-PIV5 F were metabolically labeled with Tran 35S for 30 minutes and chased for the indicated times. Cells were immediately lysed and cell
lysates were immunoprecipitated. Proteins were migrated on 10% SDS-PAGE and analyzed by autoradiography. (B) Quantification of F1 densitometry was
done using ImageQuant, TL software (GE Healthcare, Piscataway, NJ) and results are represented as percent cleavage defined as F1/(F1+F0). Error bars
represent the mean ± standard deviation for three independent experiments. Two-way ANOVA, **p<0.01, ***p<0.001.

doi:10.1371/journal.pone.0115736.g002
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dependence of henipaviruses on the endosomal cysteine protease cathepsin L in their natural
reservoir was verified using non-specific and specific cathepsin inhibitors. Treatment of PaKi
and R06E bat cells with the general cysteine protease inhibitor E-64d, which inhibits calpain
and cathepsins B, H and L [75] prevented cleavage of Hendra virus F in all cell types (Fig. 3A).
To verify that cathepsin L is specifically involved in Hendra F proteolytic processing in bat
cells, an inhibitor that targets cathepsin L was used. Similar to Vero cells, inhibition of cathep-
sin L also ablated cleavage of F0 into the F1 and F2 heterodimer, indicating that processing of
Hendra virus F protein is under the control of cathepsin L in its natural reservoir host
(Fig. 3A). Interestingly, in PaKi cells, an extra band of higher molecular weight, which is not
detected in other cell lines, was seen above F0 upon inhibition of Hendra F processing. A simi-
lar band was seen when a cell line derived from P. alecto brain (PaBr) was treated with E64-d
and cathepsin L inhibitor (data not shown). This suggests that additional post translational
modifications may occur in the uncleaved Hendra F protein in its natural reservoir P. alecto.

Fig 3. Inhibition of cathepsin L and vesicular trafficking prevent cleavage of Hendra virus F. (A) Vero
cells or bat cells were transfected with pCAGGS-Hendra virus F and 24 hours post transfection, cells were
metabolically labeled with Tran 35S in the absence or presence of the indicated inhibitor. E64-d and cathepsin
L inhibitor I were added at 20μM. Cells were lysed, immunoprecipitated and anaylzed on 10% SDS-PAGE.
Arrow indicates the position of a novel band. (B, C) Cells transiently transfected with Hendra virus F (B) or
PIV5 F (C) were labeled with Tran 35S for 45 minutes and then chased for 3 hours at either 20°C or 37°C.
Following lysis and immunoprecipitation, proteins were run on 10% SDS-PAGE and visualized
by autoradiography.

doi:10.1371/journal.pone.0115736.g003
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Proteolytic activation of Henipavirus F protein requires endocytosis [49–52], cleavage by ca-
thepsin L and recycling of the cleaved F1-F2 heterodimer to the cell surface [47,48]. Tempera-
ture block experiments have been used to influence both exocytic and endocytic transport
[76,77]. We therefore determined the effect of reduced temperature on the cleavage of Hendra
virus F and PIV5 F. Cells expressing Hendra virus F or PIV5 F were metabolically labeled and
chased for 3 hours either at 20°C or 37°C. The cleaved F1 product of Hendra F and PIV5 F was
observed following incubation at 37°C. While a background band of slightly lower molecular
weight than Hendra F1 was seen, incubation of R06E and PaKi at 20°C abolished proteolytic
processing of Hendra F in bat cells (Fig. 3B), as was previously shown in Vero cells [52], consis-
tent with the cleavage of Hendra F depending on temperature-sensitive vesicular trafficking in
bat cells. Interestingly, while incubation of Vero cells at 20°C abolished PIV5 F processing, the
F1 cleavage product could still be observed in PaKi and to an even greater extent in R06E cells
(Fig. 3C). To determine whether this was specific for bat cells, we utilized an additional mam-
malian cell line from baby hamster kidney cells, BHK. Similar to fruit bat cells, incubation of
BHK cells at 20°C did not completely inhibit PIV5 F proteolytic processing. In addition, while
the majority of PIV5 F0 was cleaved to F1 in BHK, PaKi and R06E cells upon incubation for 3
hours at 37°C, F0 was clearly visible in Vero cells at this time point. Furin is primarily located
in the Golgi and TGN, and it can also circulate between the cell surface and the TGN [78–80].
Inhibition of Hendra virus F cleavage by lowering the temperature to 20°C (Fig. 3B) indicate
that endosomal trafficking is blocked in R06E and PaKi cells under this condition; however the
varying effects of lower temperature on PIV5 F processing in different cell types suggest that
the temperature dependence of trafficking through the TGN may differ between different cell
types. These results, combined with our previous findings on the more rapid furin processing
of PIV5 F in bat cells, suggest that subtle differences in cellular distribution and localization of
furin or trafficking through TGNmay exist between different mammalian species.

Effect of dec- RVKR-cmk on furin-like proteases in fruit bat cells
Results in Fig. 1A demonstrated that bat cells can cleave the fusion protein of PIV5, which is
proteolytically processed by furin in other cell types [44], suggesting that bat cells have active
furin or furin-like proteases. To verify the involvement of a furin protease in the cleavage of the
PIV5 fusion protein, we utilized a small molecule inhibitor of furin, decanoyl-Arg-Val-Lys-
Arg-chloromethyl ketone (dec-RVKR-cmk), which binds the catalytic sites of all seven mam-
malian proprotein convertases and inhibits their activity [81,82]. This inhibitor has also been
shown to be effective in inhibiting Kex-2, the yeast endoproteinase homologue of furin as well
[83]. Vero cells and fruit bat cells were treated with inhibitors of furin and cathepsin L, and
cleavage of PIV5 fusion protein was assessed. Addition of cathepsin L inhibitor to Vero, PaKi
or R06E cells had no effect on proteolytic processing of PIV5 F protein (Fig. 4A). In Vero cells,
addition of the potent furin inhibitor dec-RVKR-cmk resulted in a marked decrease in cleavage
of PIV5 F0 to F1. In contrast, the effect of the inhibitor on processing of PIV5 F in PaKi
and R06E cells was minimal (Fig. 4A). Dec-RVKR-cmk has been widely used to prevent the
proteolytic activation of a variety of viral glycoproteins [84–87], and inhibition of cleavage usu-
ally requires a concentration range from 25 μM to over 40 μM. In the presence of 50 μM dec-
RVKR-cmk, the percentage of inhibition of PIV5 F cleavage in Vero cells was approximately
70% compared to the control without inhibitor, while only 20% inhibition in PaKi and RO6E
cells was observed compared to the control. We next determined the effect of the inhibitor on
furin-like enzyme activity in cell lysates from different fruit bat cells and other mammalian
cells, Vero cells, A549, and BEAS-2B. Cell lysates prepared from equal number of cells for each
cell type were incubated with increasing concentrations of dec-RVKR-cmk (50 μM, 80 μM, 100
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μM,150 μM) for 3 hours at 37°C prior to the addition of the flourogenic furin substrate, Pyr-
Arg-Thr-Lys-Arg-AMC, and release of the fluorescent AMC product was subsequently deter-
mined. All cell types showed a dose-dependent response to the drug, and as shown in Fig. 4B,
there were no significant statistical differences in the effect of the inhibitor between the differ-
ent cell types at all the tested concentrations, indicating that binding of the competitive inhibi-
tor dec-RVKR-cmk to the catalytic site of furin-like proteases is comparable in the different
cell types. The observed differences in the response to the potent furin inhibitor in fruit bat
cells seen in Fig. 3A may therefore reflect differences in the accessibility of the inhibitor to the
enzyme, i.e. the level of uptake and metabolism between the different cell types, or differences
in the expression or localization of furin-like proteases.

Bat lung cells display slower kinetics of furin-like enzyme activity than
human lung cells
Fruit bat cells have functional furin-like proteases, and processing of PIV5 F occurs more rap-
idly in these cells than in Vero cells (Fig. 2A). To compare the enzymatic activity of furin ho-
mologs present in bat cells to that present in other mammalian cell types, we performed a

Fig 4. Effect of dec-RVKR-cmk on PIV5 F cleavage and furin enzyme activity in fruit bat cells. (A) Cells
transfected with pCAGGS-PIV5 F were labeled with Tran 35S for 3 hours in the absence or presence of
cathepsinL I (20μM) or dec-RVKR-cmk (50 μM). Prior to SDS-PAGE analysis, cells were lysed and subject to
immunoprecipitation. Images were visualized by autoradiography. (B) 2×106 cells of each cell type were
lysed for 10 minutes on ice followed by shearing with a 10-gauge needle. Cell lysates were incubated with
increasing concentrations of dec-RVKR-cmk for 3 hours at 37°C prior to addition of Pyr-Arg-Thr-Lys-Arg-
AMC furin substrate. End-point fluorescence was measured after 4 hours using an XPS plate reader. Error
bars represent the mean ± standard deviation for three independent experiments.

doi:10.1371/journal.pone.0115736.g004
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furin-like enzyme activity assay. This assay, which is not specific for furin but determines the
activity of all proprotein convertases, allows determination of endogenous enzymatic activity
of furin-like enzymes in whole cell lysates [70], and was used to compare the kinetics of the
protease activities per cell in different cell lines. Cell lysates from 2×106 cells of each cell type
were added to the flourogenic substrate, Pyr-Arg-Thr-Lys-Arg-AMC, and fluorescence was
monitored for 4 hours. The progress curves obtained for each cell type allowed determination
of differences in total furin-like enzyme activity (Fig. 5). P. alecto fetus cells (PaFe) generated
the lowest total amount of fluorescent product at each time point, indicating that both the rate
and extent of furin processing per cell is lowest in these cells. R. aegyptiacus cells R06E and R05T
displayed the next lowest furin-like activity. Statistical analysis showed that there was no signifi-
cant difference in furin-like activity between Vero and PaKi cells suggesting that the total cellular
furin-like activity is comparable in these two kidney cell lines. However, comparison of AMC re-
lease in R06E to Vero or PaKi cells showed significant difference starting 18 minutes after addi-
tion of the substrate (p value<0.05) and during the 4 hour incubation period, with a p value
<0.0001 between 30 and 90 minutes. Furin-like activity in cells obtained from P. alecto brain
(PaBr) was significantly higher than the other fruit bat cells P. alecto lung (PaLu) and PaFe,
R06E and R05T one hour post incubation with the substrate. Interestingly, the progress curves
for the total furin-like activity in the two lung human cell lines, A549 and BEAS-2B, were differ-
ent from other tested cell lines. Release of AMC was faster and fluorescence reached maximum
levels by 30 minutes or 60 minutes in A549 and BEAS-2B, respectively. In contrast, this rapid
proteolysis of the Pyr-Arg-Thr-Lys-Arg-AMC substrate was not observed in PaLu cells and the
total furin-like activity in the P. alecto lung cells was significantly lower than that of A549 and
BEAS-2B cells at all timepoints, with a p value<0.0001 during the first three hours. These data
reveal that bat cells have functional and active furin-like enzymes that can recognize and cleave
a furin substrate, with variation seen in the total furin-like enzyme activity between cells derived
from different tissues. Furin-like pro-protein convertases are expressed differently in various
body tissues and the variation seen in the total furin-like activity between the different cells
types is expected. However, the significant difference between the processing of the furin sub-
strate between P. alecto lung cells and the two human lung cells suggest differences either in the
activity or in the expression levels of the furin-like proteases in the lungs of the two species.

Bat furin and cathepsin L proteases have specific amino acid sequence
variations not detected in other mammalian counterparts
To compare amino acid sequences of bat cathepsin L and furin to other mammalian proteases,
we performed multiple sequence alignment analysis. Whole genome sequencing of different
bat species has been performed [72,88]; however the furin sequences from both P. vampyrus
andMyotis davidii were not complete. Sequences of furin and cathepsin L from the P. alecto
transcriptome were previously generated [71]. Multiple sequence alignments of furin and ca-
thepsin L1 amino acid sequences from P. alecto and a variety of other mammals were per-
formed using ClustalW [89]. Both furin and cathepsin L1 showed a high level of conservation
among different mammalian species however, furin showed a higher degree of conservation.
The sequence alignment for mammalian cathepsin L1 proteases (Fig. 6) shows amino acid
changes between the different species spread across the whole protein sequence, with some
amino acid changes that are specific to P. alecto cathepsin L (marked in yellow). Compared to
cathepsin L1, furin from various mammalian species had fewer amino acid changes across the
entire sequence (Fig. 7). Furin is a type I membrane protein composed of an N-terminal pro-
peptide followed by a catalytic site, a P/homo B domain which is essential for activity of the cat-
alytic domain, and a C-terminal region containing a transmembrane domain [90]. The
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N-terminal region of P. alecto furin contained one amino acid change not observed in any
other mammalian furin, as the leucine at position 57 in other mammalian furins is substituted
by glutamine in P. alecto. The catalytic site (shown in gray), encompassing amino acid residues
G146 to L382 [45,90] was extremely conserved, with a single glutamate to aspartate change in
the catalytic site of Pteropus furin at position 299. The highest degree of variation observed for
P. alecto furin occurred at the C-terminus, including the following unique amino acid changes:
A at position 619 in P. Alecto furin in contrast to P at this position in all other mammalian fur-
ins (P619>A), D623>A, S627>N, P642>R, Q651>R, T673>K, G781>R, K788>R, A792>V,
deletion of N at position 496 and deletion of E at position 768 (highlighted in green). The cyto-
plasmic tail controls the trafficking and cellular localization of furin. The sequences at the cyto-
plasmic tail of furin that are known to be critical for intracellular trafficking of furin include
the acidic cluster (EECPpSDpSEEDE) and the two membrane proximal motifs YKGL and LI
[78,79,91–93]. The YKGL and LI motifs are conserved in P. alecto; however, the first aspartate
(position 768) in the acidic cluster sequence, which is required for phosphorylation by casein
kinase II, is absent in P. alecto furin. It is possible that the deletion of the acidic aspartate affects
the phosphorylation of serine 772 and thus alters the intracellular localization or distribution
of furin in P. alecto.

Discussion
Bats have recently been shown to carry a number of novel viruses [94]; however, our knowl-
edge of the natural history of viruses in their bat reservoir host and the special features of bats
that allow them to co-exist with this wide range of viruses is limited. Bats and bat-derived cells
are susceptible to infection by many viruses including filoviruses, paramyxoviruses, coronavi-
ruses and influenza virus [74,95] indicating that bats have the necessary cellular factors to me-
diate many viral infections. Cellular proteases play an essential role in proteolytic activation of

Fig 5. Different mammalian cell types show differences in furin-like enzyme activity. 2×106 cells of each cell type were lysed for 10 minutes on ice
followed by shearing with a 10-gauge needle. Clarified lysates were then incubated with 10 μM of Pyr-Arg-Thr-Lys-Arg-AMC furin substrate for 4 hours at 37°
C with fluorescence measured every 3 minutes. Each cell type was assayed in duplicate and the progress curves are representative of 3
separate experiments.

doi:10.1371/journal.pone.0115736.g005
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Fig 6. Sequence alignment of Pteropus alecto cathepsin L1 and cathepsin L1 of other mammalian species show Pteropus-specific amino acid
changes. Sequence alignment was generated using ClustalW. (GenBank accession numbers are given in parentheses): human (P07711.2), rhesus
macaque (EHH24212.1), horse (XP_001494409.1), dolphin (XP_004320974.1), dog (Q9GL24.1), cow (P25975.3), mouse (NP_034114.1). Yellow indicates
amino acid changes that are specific to P. alecto cathepsin L. The asterisk “*” indicates identical residues, “:” indicates conserved substitutions and “.” semi-
conserved substitutions.

doi:10.1371/journal.pone.0115736.g006
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the majority of viral glycoproteins and in the spread of infection, but very little is currently
known about the protease profile of the bat hosts. Interestingly, a number of bat-borne viruses
utilize the endosomal cathepsin proteases during their life cycle [47,48,63–65], in contrast to
the more common use of furin proteases for intracellular viral glycoprotein processing. To ad-
dress the ability of bat cells to proteolytically process viral fusion proteins, we examined the
proteolytic processing of the PIV5 F protein, normally cleaved by furin, and the Hendra virus F
protein, normally cleaved by cathepsin L, in cells derived from two species of bats of the Ptero-
podidae family. We showed that P. alecto and R. aegyptiacus have homologues of cathepsin

Fig 7. The C-terminus region of P. alecto furin has the highest degree of amino acid variation compared to furin proteases from other mammalian
species. Sequence alignment was generated using ClustalW. (GenBank accession numbers are given in parentheses): human (NP_002560.1), rhesus
macaque (EHH27600.1), horse (XP_005602832.1), dolphin (XP_004322334.1), dog (XP_850069.2), cow (NP_776561.1), mouse (NP_001074923.1).
Highlighted in gray is the catalytic site of furin and in green the changes in amino acid residues in P. alecto compared to other mammalian furins. The asterisk
“*” indicates identical residues, “:” indicates conserved substitutions and “.” semi-conserved substitutions.

doi:10.1371/journal.pone.0115736.g007
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and furin proteases capable of cleaving and activating cathepsin-dependent (Hendra virus F)
and furin-dependent (PIV5 F) viral fusion proteins. This finding is consistent with previous
studies showing that cells from different bat species can cleave glycoproteins of some viruses
such as Ebola virus [96], and an African henipavirus [97,98]. Our data also indicate that the re-
quirements for proteolytic processing of Hendra virus F in bat cells are analogous to those pre-
viously determined in Vero cells [47,52]. Temperature reduction experiments or inhibition of
cathepsin L prevented both cleavage of Hendra virus F and syncytia formation (data not
shown), indicating that vesicular trafficking and a bat homolog of cathepsin L are involved in
activation of Hendra virus F in bat cells. In addition, we did not detect a significant difference
in the kinetics of Hendra F cleavage in PaKi or R06E compared to Vero cells and levels of
cleaved F1 on the cell surface of Vero cells and bat cells were similar (data not shown). These
results indicate that Hendra virus F trafficking in bat cells is analogous to that in Vero cells,
suggesting that Hendra virus evolved its dependence on cathepsin L to mediate infection
through adaptation in its bat natural host.

Cleavage of PIV5 F protein and the furin-like enzyme activity assay indicate that bat cells
from P. alecto and R. aegyptiacus have active furin-like proteases capable of recognizing and
cleaving the furin consensus site R-X-K/R-R in PIV5 F protein and in the fluorogenic furin
substrate. These results support recent evidence that R06E cells and other cells derived from
different Pteropodidae bat species are sensitive to infection of viruses that utilize furin for medi-
ating infection including filoviruses and paramyxoviruses [74,95,96]. However, kinetics of
PIV5 F cleavage indicated that proteolytic processing of the furin-dependent PIV5 F is more
rapid in bat cells than in Vero cells with the most rapid cleavage seen in R06E cells; however,
the total furin-like enzyme activity assay showed lower total cellular furin-like activity in R06E
cells compared to Vero cells. A more rapid cleavage of PIV5 F even with less furin activity per
cell could result from differences in the cellular localization of the furin homologues in the bat
cell types. Consistent with this, we found that reduction of temperature to 20°C did not
completely inhibit cleavage of PIV5 F in R06E cells and PaKi cells, but significantly reduced
proteolysis of PIV5 F in Vero cells as was previously shown [52]. Furin is a membrane-bound
protease that circulates between the cell surface and the TGN through endosomes [79]; howev-
er, the cellular localization and distribution of furins may vary between the different cell types.
Specific motifs in the cytoplasmic tail at the C-terminus of furin control its intracellular traf-
ficking [78,91]. Amino acid sequence alignment of P. alecto furin and multiple other mammali-
an furins shows that the two membrane proximal motifs YKGL and LI required for trafficking
of furin from the TGN to endosomes and the CPpSDpSEEDE motif that is important for reten-
tion of furin in the TGN are conserved in P. alecto furin [91,99]. The phosphorylated acidic
cluster (EECPpSDpSEEDE) which directs trafficking from endosomes to the TGN [92] lacks
the first glutamate in furin from P. alecto. In addition, several differences in specific amino acid
residues occur at the C-terminus of P. alecto furin compared to other mammalian furins that
may influence the localization of furin in P. alecto cells and possibly other members within the
pteropodidae family.

Our data also show differences between the total cellular activity of furin-like enzymes in
various cell types. Furin is ubiquitously expressed at different levels in all tissues [100,101]. The
mRNA levels of furin determined in different tissues of an African monkey showed highest lev-
els in kidney and liver, lower levels in brain, spleen and thymus and lowest levels were detected
in tissues from lung, heart and testis [101]. Our results show that P. alecto kidney cells had
higher activity than other Pteropus cell types, followed by brain cells (PaBr), lung cells (PaLu)
and fetus cells, which showed the lowest furin-like activity. Interestingly, furin-like activity in
PaLu cells was significantly lower and showed slower kinetics relative to the two human lung
cell lines, A549 and BEAS-2B. This finding could indicate either that human lung cells have a
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greater number of active furin-like enzymes than P. alecto lung cells, or that the individual
furin proteases in human lung cells have increased proteolytic activity. BEAS-2B cells are iso-
lated from human bronchial epithelium, A549 are type II alveolar basal epithelial cells while
the PaLu cells are mainly cuboidal epithelial cells derived from lung tissues [67]. Differences in
cell type between these three cell lines may also contribute to the differences seen in the total
furin-like activity.

In conclusion, our results show that bats have cathepsin-like and furin-like proteases analo-
gous to their counterparts in other mammalian species, suggesting that the utilization of ca-
thepsins for viral glycoprotein processing in a number of bat-resident viruses is not due to a
lack of furin-like enzymes in the bat reservoir host. However, potential alterations in furin lo-
calization or activity in the bat host may affect virus replication. Newly emerging viruses can be
major threats to public health, so further investigation of virus biology in bat reservoirs is need-
ed to provide a global perspective on the changes that occur in viruses within their natural
hosts that contribute to the emergence of the virus and transmission to other species.
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