1,576 research outputs found

    Load Balancing with Energy Storage Systems Based on Co-Simulation of Multiple Smart Buildings and Distribution Networks

    Get PDF
    In this paper, we present a co-simulation framework that combines two main simulation tools, one that provides detailed multiple building energy simulation ability with Energy-Plus being the core engine, and the other one that is a distribution level simulator, Matpower. Such a framework can be used to develop and study district level optimization techniques that exploit the interaction between a smart electric grid and buildings as well as the interaction between buildings themselves to achieve energy and cost savings and better energy management beyond what one can achieve through techniques applied at the building level only. We propose a heuristic algorithm to do load balancing in distribution networks affected by service restoration activities. Balancing is achieved through the use of utility directed usage of battery energy storage systems (BESS). This is achieved through demand response (DR) type signals that the utility communicates to individual buildings. We report simulation results on two test cases constructed with a 9-bus distribution network and a 57-bus distribution network, respectively. We apply the proposed balancing heuristic and show how energy storage systems can be used for temporary relief of impacted networks

    On the quantum probability flux through surfaces

    Full text link
    We remark that the often ignored quantum probability current is fundamental for a genuine understanding of scattering phenomena and, in particular, for the statistics of the time and position of the first exit of a quantum particle from a given region, which may be simply expressed in terms of the current. This simple formula for these statistics does not appear as such in the literature. It is proposed that the formula, which is very different from the usual quantum mechanical measurement formulas, be verified experimentally. A full understanding of the quantum current and the associated formula is provided by Bohmian mechanics.Comment: 15 pages, 3 figures, revised and more detailed version, to be published in Journal of Statistical Physics, August 9

    Fuel cells for power generation and organic waste treatment on the island of Mull

    Get PDF
    In-situ use of biomass and organic waste streams have the potential to provide the key to energy self sustainability for islands and remote communities. Traditionally biogas fuels have been used in combustion engines for electric power generation. However, fuel cells offer the prospect of achieving higher generating efficiencies, and additionally, important environmental benefits can be achieved by way of mitigating greenhouse gas emissions, whilst providing a carbon sink. This paper presents the design details of a biogas gas plant and fuel cell installation that will provide a practical solution on an island (and be applicable in other remote and rural areas) where connection to the grid can be expensive, and where biofuels can be produced on site at no significant extra cost

    Methodological Reflections on the MOND/Dark Matter Debate

    Full text link
    The paper re-examines the principal methodological questions, arising in the debate over the cosmological standard model's postulate of Dark Matter vs. rivalling proposals that modify standard (Newtonian and general-relativistic) gravitational theory, the so-called Modified Newtonian Dynamics (MOND) and its subsequent extensions. What to make of such seemingly radical challenges of cosmological orthodoxy? In the first part of our paper, we assess MONDian theories through the lens of key ideas of major 20th century philosophers of science (Popper, Kuhn, Lakatos, and Laudan), thereby rectifying widespread misconceptions and misapplications of these ideas common in the pertinent MOND-related literature. None of these classical methodological frameworks, which render precise and systematise the more intuitive judgements prevalent in the scientific community, yields a favourable verdict on MOND and its successors -- contrary to claims in the MOND-related literature by some of these theories' advocates; the respective theory appraisals are largely damning. Drawing on these insights, the paper's second part zooms in on the most common complaint about MONDian theories, their ad-hocness. We demonstrate how the recent coherentist model of ad-hocness captures, and fleshes out, the underlying -- but too often insufficiently articulated -- hunches underlying this critique. MONDian theories indeed come out as severely ad hoc: they do not cohere well with either theoretical or empirical-factual background knowledge. In fact, as our complementary comparison with the cosmological standard model's Dark Matter postulate shows, with respect to ad-hocness, MONDian theories fare worse than the cosmological standard model.Comment: forthcoming in Studies in History and Philosophy of Scienc

    The Virtues of Pursuit-Worthy Speculation: The Promises of Cosmic Inflation

    Full text link
    The paper investigates the historical and contemporary pursuit-worthiness of cosmic inflation-the rationale for working on it (rather than necessarily the evidential support for claims to its approximate truth): what reasons existed, and exist, that warrant inflation's status as the mainstream paradigm studied, explored, and further developed by the majority of the cosmology community? We'll show that inflation exemplifies various salient theory virtues: explanatory depth, unifying/integrative power, fertility and positive heuristics, the promotion of understanding, and the prospect (and passing) of novel benchmark tests. This, we'll argue, constitutes inflation's auspicious promise. It marks inflation as preferable over both the inflation-less Hot Big Bang Model, as well as rivals to inflation: inflation, we maintain, rightly deserved, and continues to deserve, the concerted research efforts it has enjoyed.Comment: Forthcoming in British Journal for the Philosophy of Scienc

    Multi-Component Dark Matter Systems and Their Observation Prospects

    Full text link
    Conversions and semi-annihilations of dark matter (DM) particles in addition to the standard DM annihilations are considered in a three-component DM system. We find that the relic abundance of DM can be very sensitive to these non-standard DM annihilation processes, which has been recently found for two-component DM systems. To consider a concrete model of a three-component DM system, we extend the radiative seesaw model of Ma by adding a Majorana fermion \chi and a real scalar boson \phi, to obtain a Z_2 \times Z'_2 DM stabilizing symmetry, where we assume that the DM particles are the inert Higgs boson, \chi and \phi. It is shown how the allowed parameter space, obtained previously in the absence of \chi and \phi, changes. The semi-annihilation process in this model produces monochromatic neutrinos. The observation rate of these monochromatic neutrinos from the Sun at IceCube is estimated. Observations of high energy monochromatic neutrinos from the Sun may indicate a multi-component DM system.Comment: 27 pages, 11 figure
    • …
    corecore