29 research outputs found

    Identification of an N-terminal 27 kDa fragment of Mycoplasma pneumoniae P116 protein as specific immunogen in M. pneumoniae infections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Mycoplasma pneumoniae </it>is an important cause of respiratory tract infection and is increasingly being associated with other diseases such as asthma and extra-pulmonary complications. Considerable cross-reactivity is known to exist between the whole cell antigens used in the commercial serological testing assays. Identification of specific antigens is important to eliminate the risk of cross-reactions among different related organisms. Adherence of <it>M. pneumoniae </it>to human epithelial cells is mediated through a well defined apical organelle to which a number of proteins such as P1, P30, P116 and HMW1-3 have been localized, and are being investigated for adhesion, gliding and immunodiagnostic purposes.</p> <p>Methods</p> <p>A 609 bp fragment P116<sub>(N-27), </sub>corresponding to the N-terminal region of <it>M. pneumoniae </it>P116 gene was cloned and expressed. A C-terminal fragment P1<sub>(C-40), </sub>of P1 protein of <it>M. pneumoniae </it>was also expressed. Three IgM ELISA assays based on P116<sub>(N-27), </sub>P1<sub>(C-40) </sub>and (P116 <sub>(N-27) </sub>+ P1<sub>(C-40)</sub>) proteins were optimized and a detailed analysis comparing the reactivity of these proteins with a commercial kit was carried out. Comparative statistical analysis of these assays was performed with the SPSS version 15.0.</p> <p>Results</p> <p>The expressed P116<sub>(N-27) </sub>protein was well recognized by the patient sera and was immunogenic in rabbit. P1<sub>(C-40) </sub>of <it>M. pneumoniae </it>was also immunogenic in rabbit. In comparison to the reference kit, which is reported to be 100% sensitive and 75% specific, ELISA assay based on purified P116<sub>(N-27), </sub>P1<sub>(C-40) </sub>and (P116<sub>(N-27) </sub>+ P1<sub>(C-40)</sub>) proteins showed 90.3%, 87.1% and 96.8% sensitivity and 87.0%, 87.1% and 90.3% specificity respectively. The p value for all the three assays was found to be < 0.001, and there was a good correlation and association between them.</p> <p>Conclusion</p> <p>This study shows that an N-terminal fragment of P116 protein holds a promise for serodiagnosis of <it>M. pneumoniae </it>infection. The IgM ELISA assays based on the recombinant proteins seem to be suitable for the use in serodiagnosis of acute <it>M. pneumoniae </it>infections. The use of short recombinant fragments of P116 and P1 proteins as specific antigens may eliminate the risk of cross-reactions and help to develop a specific and sensitive immunodiagnostic assay for <it>M. pneumoniae </it>detection.</p

    New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-Affinity Îł-Hydroxybutyrate (GHB) Binding Sites

    No full text
    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [(3)H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screening of 1 against different CNS targets establishes a high selectivity and we demonstrate in vivo brain penetration. In vitro characterization of [(3)H]-1 binding shows high specificity to the high-affinity GHB binding sites

    A Reinforcing Circuit Action of Extrasynaptic GABAA Receptor Modulators on Cerebellar Granule Cell Inhibition

    Get PDF
    GABA(A) receptors (GABARs) are the targets of a wide variety of modulatory drugs which enhance chloride flux through GABAR ion channels. Certain GABAR modulators appear to acutely enhance the function of δ subunit-containing GABAR subtypes responsible for tonic forms of inhibition. Here we identify a reinforcing circuit mechanism by which these drugs, in addition to directly enhancing GABAR function, also increase GABA release. Electrophysiological recordings in cerebellar slices from rats homozygous for the ethanol-hypersensitive (α6100Q) allele show that modulators and agonists selective for δ-containing GABARs such as THDOC, ethanol and THIP (gaboxadol) increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in granule cells. Ethanol fails to augment granule cell sIPSC frequency in the presence of glutamate receptor antagonists, indicating that circuit mechanisms involving granule cell output contribute to ethanol-enhancement of synaptic inhibition. Additionally, GABAR antagonists decrease ethanol-induced enhancement of Golgi cell firing. Consistent with a role for glutamatergic inputs, THIP-induced increases in Golgi cell firing are abolished by glutamate receptor antagonists. Moreover, THIP enhances the frequency of spontaneous excitatory postsynaptic currents in Golgi cells. Analyses of knockout mice indicate that δ subunit-containing GABARs are required for enhancing GABA release in the presence of ethanol and THIP. The limited expression of the GABAR δ subunit protein within the cerebellar cortex suggests that an indirect, circuit mechanism is responsible for stimulating Golgi cell GABA release by drugs selective for extrasynaptic isoforms of GABARs. Such circuit effects reinforce direct actions of these positive modulators on tonic GABAergic inhibition and are likely to contribute to the potent effect of these compounds as nervous system depressants
    corecore