11 research outputs found
Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells
Matrix-bound VEGF elicits more distinct vascular effects than soluble VEGF, including prolonged VEGFR2 activation with altered patterns of tyrosine activation and downstream enhancement of the p38/MAPK pathway
VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis
Vascular endothelial growth factor receptor-2 (VEGFR-2) activation by VEGF-A is essential in vasculogenesis and angiogenesis. We have generated a pan-phosphorylation site map of VEGFR-2 and identified one major tyrosine phosphorylation site in the kinase insert (Y951), in addition to two major sites in the C-terminal tail (Y1175 and Y1214). In developing vessels, phosphorylation of Y1175 and Y1214 was detected in all VEGFR-2-expressing endothelial cells, whereas phosphorylation of Y951 was identified in a subset of vessels. Phosphorylated Y951 bound the T-cell-specific adapter (TSAd), which was expressed in tumor vessels. Mutation of Y951 to F and introduction of phosphorylated Y951 peptide or TSAd siRNA into endothelial cells blocked VEGF-A-induced actin stress fibers and migration, but not mitogenesis. Tumor vascularization and growth was reduced in TSAd-deficient mice, indicating a critical role of Y951-TSAd signaling in pathological angiogenesis
Substrate-Specific Conformational Regulation of the Receptor Tyrosine Kinase VEGFR2 Catalytic Domain
Targeting tyrosine kinases for treatment of ocular tumors
Uveal melanoma is the most common intraocular primary malignant tumor in adults, and retinoblastoma is the one in children. Current mainstay treatment options include chemotherapy using conventional drugs and enucleation, the total removal of the eyeball. Targeted therapies based on profound understanding of molecular mechanisms of ocular tumors may increase the possibility of preserving the eyeball and the vision. Tyrosine kinases, which modulate signaling pathways regarding various cellular functions including proliferation, differentiation, and attachment, are one of the attractive targets for targeted therapies against uveal melanoma and retinoblastoma. In this review, the roles of both types of tyrosine kinases, receptor tyrosine kinases and non-receptor tyrosine kinases, were summarized in relation with ocular tumors. Although the conventional treatment options for uveal melanoma and retinoblastoma are radiotherapy and chemotherapy, respectively, specific tyrosine kinase inhibitors will enhance our armamentarium against them by controlling cancer-associated signaling pathways related to tyrosine kinases. This review can be a stepping stone for widening treatment options and realizing targeted therapies against uveal melanoma and retinoblastoma.N