86 research outputs found

    A Generalized Framework for Quantifying the Dynamics of EEG Event-Related Desynchronization

    Get PDF
    Brains were built by evolution to react swiftly to environmental challenges. Thus, sensory stimuli must be processed ad hoc, i.e., independent—to a large extent—from the momentary brain state incidentally prevailing during stimulus occurrence. Accordingly, computational neuroscience strives to model the robust processing of stimuli in the presence of dynamical cortical states. A pivotal feature of ongoing brain activity is the regional predominance of EEG eigenrhythms, such as the occipital alpha or the pericentral mu rhythm, both peaking spectrally at 10 Hz. Here, we establish a novel generalized concept to measure event-related desynchronization (ERD), which allows one to model neural oscillatory dynamics also in the presence of dynamical cortical states. Specifically, we demonstrate that a somatosensory stimulus causes a stereotypic sequence of first an ERD and then an ensuing amplitude overshoot (event-related synchronization), which at a dynamical cortical state becomes evident only if the natural relaxation dynamics of unperturbed EEG rhythms is utilized as reference dynamics. Moreover, this computational approach also encompasses the more general notion of a “conditional ERD,” through which candidate explanatory variables can be scrutinized with regard to their possible impact on a particular oscillatory dynamics under study. Thus, the generalized ERD represents a powerful novel analysis tool for extending our understanding of inter-trial variability of evoked responses and therefore the robust processing of environmental stimuli

    Increase of universality in human brain during mental imagery from visual perception

    Get PDF
    BACKGROUND: Different complex systems behave in a similar way near their critical points of phase transitions which leads to an emergence of a universal scaling behaviour. Universality indirectly implies a long-range correlation between constituent subsystems. As the distributed correlated processing is a hallmark of higher complex cognition, I investigated a measure of universality in human brain during perception and mental imagery of complex real-life visual object like visual art. METHODOLOGY/PRINCIPAL FINDINGS: A new method was presented to estimate the strength of hidden universal structure in a multivariate data set. In this study, I investigated this method in the electrical activities (electroencephalogram signals) of human brain during complex cognition. Two broad groups--artists and non-artists--were studied during the encoding (perception) and retrieval (mental imagery) phases of actual paintings. Universal structure was found to be stronger in visual imagery than in visual perception, and this difference was stronger in artists than in non-artists. Further, this effect was found to be largest in the theta band oscillations and over the prefrontal regions bilaterally. CONCLUSIONS/SIGNIFICANCE: Phase transition like dynamics was observed in the electrical activities of human brain during complex cognitive processing, and closeness to phase transition was higher in mental imagery than in real perception. Further, the effect of long-term training on the universal scaling was also demonstrated

    Acute effects of MDMA (3,4-methylenedioxymethamphetamine) on EEG oscillations: alone and in combination with ethanol or THC (delta-9-tetrahydrocannabinol)

    Get PDF
    Item does not contain fulltextRATIONALE: Typical users of 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") are polydrug users, combining MDMA with alcohol or cannabis [most active compound: delta-9-tetrahydrocannabinol (THC)]. OBJECTIVES: The aim of the present study was to investigate whether co-administration of alcohol or THC with MDMA differentially affects ongoing electroencephalogram (EEG) oscillations compared to the administration of each drug alone. METHODS: In two separate experiments, 16 volunteers received four different drug conditions: (1) MDMA (100 mg); (2) alcohol clamp (blood alcohol concentration = 0.6 per thousand) or THC (inhalation of 4, 6 and 6 mg, interval of 1.5 h); (3) MDMA in combination with alcohol or THC; and (4) placebo. Before and after drug administration, electroencephalography was recorded during an eyes closed resting state. RESULTS: Theta and alpha power increased after alcohol intake compared to placebo and reduced after MDMA intake. No interaction between alcohol and MDMA was found. Significant MDMA x THC effects for theta and lower-1-alpha power indicated that the power attenuation after the combined intake of MDMA and THC was less than the sum of each drug alone. For the lower-2-alpha band, the intake of MDMA or THC alone did not significantly affect power, but the intake of combined MDMA and THC significantly decreased lower-2-alpha power. CONCLUSIONS: The present findings indicate that the combined intake of MDMA and THC, but not of MDMA and alcohol, affects ongoing EEG oscillations differently than the sum of either one drug alone. Changes in ongoing EEG oscillations may be related to the impaired task performance that has often been reported after drug intake

    Changes in EEG during Ultralong Running

    Get PDF
    There are only a few studies using human electroencephalograms (EEGs) to investigate bioelectrical changes in the brain during exercise (running or cycling). These studies report an increase in EEG alpha amplitude during and immediately after exercise. However, only exercises within a relatively short time interval of approximately 1 hour have been investigated. Thus, we focussed on long-lasting exercise and report three single case studies, performed on the same participant, during extended exercise and under different thermal conditions. EEG was recorded during a 12-, 24-, and 56-hour ultramarathon. The 56-hour race was performed under extreme thermal stress in Death Valley, CA, with temperatures well above 55uC/131uF. Analyzing the centre gravity frequency of the EEG alpha rhythm yielded a gradual decrease with time for the 12- and 24-hour races. In the 56-hour race, the centre frequency decreased only until the first sleeping period. Alpha amplitude, on the other hand, did not vary systematically. For all three races, the lowest alpha amplitude was observed during the last test session. This decrease is most likely due to cognitive and emotional changes but not to thermal stress, exhaustion, or sleep deprivation

    EEG Correlates of Action Observation in Humans

    No full text

    EEG Correlates of Action Observation in Humans

    No full text
    corecore