111 research outputs found

    Characteristics of the Eliashberg formalism on the example of high-pressure superconducting state in phosphor

    Full text link
    The work describes the properties of the high-pressure superconducting state in phosphor: p∈{20,30,40,70}p\in\{20, 30, 40, 70\} GPa. The calculations were performed in the framework of the Eliashberg formalism, which is the natural generalization of the BCS theory. The exceptional attention was paid to the accurate presentation of the used analysis scheme. With respect to the superconducting state in phosphor it was shown that: (i) the observed not-high values of the critical temperature ([TC]p=30GPamax=8.45\left[T_{C}\right]_{p=30{\rm GPa}}^{\rm max}=8.45 K) result not only from the low values of the electron - phonon coupling constant, but also from the very strong depairing Coulomb interactions, (ii) the inconsiderable strong - coupling and retardation effects force the dimensionless ratios RΔR_{\Delta}, RCR_{C}, and RHR_{H} - related to the critical temperature, the order parameter, the specific heat and the thermodynamic critical field - to take the values close to the BCS predictions.Comment: 6 pages, 6 figure

    Genetic Analyses of Interactions among Gibberellin, Abscisic Acid, and Brassinosteroids in the Control of Flowering Time in Arabidopsis thaliana

    Get PDF
    Genetic interactions between phytohormones in the control of flowering time in Arabidopsis thaliana have not been extensively studied. Three phytohormones have been individually connected to the floral-timing program. The inductive function of gibberellins (GAs) is the most documented. Abscisic acid (ABA) has been demonstrated to delay flowering. Finally, the promotive role of brassinosteroids (BRs) has been established. It has been reported that for many physiological processes, hormone pathways interact to ensure an appropriate biological response.We tested possible genetic interactions between GA-, ABA-, and BR-dependent pathways in the control of the transition to flowering. For this, single and double mutants deficient in the biosynthesis of GAs, ABA, and BRs were used to assess the effect of hormone deficiency on the timing of floral transition. Also, plants that over-express genes encoding rate-limiting enzymes in each biosynthetic pathway were generated and the flowering time of these lines was investigated.Loss-of-function studies revealed a complex relationship between GAs and ABA, and between ABA and BRs, and suggested a cross-regulatory relation between GAs to BRs. Gain-of-function studies revealed that GAs were clearly limiting in their sufficiency of action, whereas increases in BRs and ABA led to a more modest phenotypic effect on floral timing. We conclude from our genetic tests that the effects of GA, ABA, and BR on timing of floral induction are only in partially coordinated action

    Effects of soil warming and nitrogen foliar applications on bud burst of black spruce

    Get PDF
    Key message: In mature black spruce, bud burst process is anticipated by soil warming, while delayed by foliar applications of nitrogen; however, the effects depend on growth conditions at the site. Abstract: The observation of phenological events can be used as biological indicator of environmental changes, especially from the perspective of climate change. In boreal forests, the onset of the bud burst is a key factor in the length of the growing season. With current climate change, the major factors limiting the growth of boreal trees (i.e., temperature and nitrogen availability) are changing and studies on mature trees are limited. The aim of this study was to investigate the effects of soil warming and increased nitrogen (N) deposition on bud burst of mature black spruce [Picea mariana (Mill.) BSP]. From 2008 onwards, an experimental manipulation of these environmental growth conditions was conducted in two stands (BER and SIM) at different altitudes in the boreal forest of Quebec, Canada. An increase in soil temperature (H treatment) and a canopy application of artificial rain enriched with nitrogen (N treatment) were performed. Observations of bud phenology were made during May–July 2012 and 2013. In BER, H treatment caused an anticipation (estimated as 1–3 days); while N treatment, a delay (estimated as 1–2 days but only in 2012) in bud burst. No treatments effect was significant in SIM. It has been demonstrated that soil temperature and N availability can play an important role in affecting bud burst in black spruce but the effects of these environmental factors on growth are closely linked with site conditions
    • …
    corecore