177 research outputs found

    Dipole-dipole interaction in random electromagnetic fields

    Full text link
    We demonstrate that a non-vanishing interaction force exists between pairs of induced dipoles in random, statistically stationary electromagnetic field. This new type of optical binding force leads to long-range interaction between dipolar particles even when placed in spatially incoherent fields. We also discuss several unique features of dipole-dipole interaction in spatially incoherent Gaussian fields.Comment: 3 page

    Light propagation through closed-loop atomic media beyond the multiphoton resonance condition

    Get PDF
    The light propagation of a probe field pulse in a four-level double-lambda type system driven by laser fields that form a closed interaction loop is studied. Due to the finite frequency width of the probe pulse, a time-independent analysis relying on the multiphoton resonance assumption is insufficient. Thus we apply a Floquet decomposition of the equations of motion to solve the time-dependent problem beyond the multiphoton resonance condition. We find that the various Floquet components can be interpreted in terms of different scattering processes, and that the medium response oscillating in phase with the probe field in general is not phase-dependent. The phase dependence arises from a scattering of the coupling fields into the probe field mode at a frequency which in general differs from the probe field frequency. We thus conclude that in particular for short pulses with a large frequency width, inducing a closed loop interaction contour may not be advantageous, since otherwise the phase-dependent medium response may lead to a distortion of the pulse shape. Finally, using our time-dependent analysis, we demonstrate that both the closed-loop and the non-closed loop configuration allow for sub- and superluminal light propagation with small absorption or even gain. Further, we identify one of the coupling field Rabi frequencies as a control parameter that allows to conveniently switch between sub- and superluminal light propagation.Comment: 10 pages, 8 figure

    Effect of a plasma grating on pump-probe experiments near the ionization threshold in gases

    Full text link
    Calculations are performed of the phase shift caused by the spatial modulation in the plasma density due to interference between a strong pump pulse and a weak probe pulse. It is suggested that a recent experiment [Loriot et al., Opt. Express v. 17, 13429 (2009)] observed an effective birefringence from this plasma grating rather than from the higher-order Kerr effect.Comment: 3 pages, 1 figure. Fix typos and correct number

    Signal velocity, causality, and quantum noise in superluminal light pulse propagation

    Full text link
    We consider pulse propagation in a linear anomalously dispersive medium where the group velocity exceeds the speed of light in vacuum (c) or even becomes negative. A signal velocity is defined operationally based on the optical signal-to-noise ratio, and is computed for cases appropriate to the recent experiment where such a negative group velocity was observed. It is found that quantum fluctuations limit the signal velocity to values less than c.Comment: 4 Journal pages, 3 figure

    Three Component Velocity and Acceleration Measurement Using FLEET

    Get PDF
    The femtosecond laser electronic excitation and tagging (FLEET) method has been used to measure three components of velocity and acceleration for the first time. A jet of pure N2 issuing into atmospheric pressure air was probed by the FLEET system. The femtosecond laser was focused down to a point to create a small measurement volume in the flow. The long-lived lifetime of this fluorescence was used to measure the location of the tagged particles at different times. Simultaneous images of the flow were taken from two orthogonal views using a mirror assembly and a single intensified CCD camera, allowing two components of velocity to be measured in each view. These different velocity components were combined to determine three orthogonal velocity components. The differences between subsequent velocity components could be used to measure the acceleration. Velocity accuracy and precision were roughly estimated to be +/-4 m/s and +/-10 m/s respectively. These errors were small compared to the approx. 100 m/s velocity of the subsonic jet studied

    Dispersive properties of quasi-phase-matched optical parametric amplifiers

    Get PDF
    The dispersive properties of non-degenerate optical parametric amplification in quasi-phase-matched (QPM) nonlinear quadratic crystals with an arbitrary grating profile are theoretically investigated in the no-pump-depletion limit. The spectral group delay curve of the amplifier is shown to be univocally determined by its spectral power gain curve through a Hilbert transform. Such a constraint has important implications on the propagation of spectrally-narrow optical pulses through the amplifier. In particular, it is shown that anomalous transit times, corresponding to superluminal or even negative group velocities, are possible near local minima of the spectral gain curve. A possible experimental observation of such effects using a QPM Lithium-Niobate crystal is suggested.Comment: submitted for publicatio

    Transparent Anomalous Dispersion and Superluminal Light Pulse Propagation at a Negative Group Velocity

    Full text link
    Anomalous dispersion cannot occur in a transparent passive medium where electromagnetic radiation is being absorbed at all frequencies, as pointed out by Landau and Lifshitz. Here we show, both theoretically and experimentally, that transparent linear anomalous dispersion can occur when a gain doublet is present. Therefore, a superluminal light pulse propagation can be observed even at a negative group velocity through a transparent medium with almost no pulse distortion. Consequently, a {\it negative transit time} is experimentally observed resulting in the peak of the incident light pulse to exit the medium even before entering it. This counterintuitive effect is a direct result of the {\it rephasing} process owing to the wave nature of light and is not at odds with either causality or Einstein's theory of special relativity.Comment: 12 journal pages, 9 figure

    A Knob for Changing Light Propagation from Subluminal to Superluminal

    Get PDF
    We show how the application of a coupling field connecting the two lower metastable states of a lambda-system can produce a variety of new results on the propagation of a weak electromagnetic pulse. In principle the light propagation can be changed from subluminal to superluminal. The negative group index results from the regions of anomalous dispersion and gain in susceptibility.Comment: 6 pages,5 figures, typed in RevTeX, accepted in Phys. Rev.

    Passive optical mapping of structural evolution in complex fluids

    Get PDF
    Self-assembling complex systems exhibit properties that involve a broad spectrum of thermal, structural, morphological, and optical transitions. Various techniques have been used to assess different aspects of the phase transitions in these complex systems. However, because of inherent technical constraints, structural information is usually provided only within narrow ranges of concentrations and temperatures. We show here that by effectively suppressing multiple scattering, low-coherence dynamic light scattering permits assessing the aggregation dynamics of self-assembling systems in a completely passive manner and over ranges of concentration and temperatures well beyond the limits of traditional approaches. The power spectral analysis of scattered intensity fluctuations permits a reliable characterization of multiple relaxation times. We demonstrate that the entire phase diagram can be covered in a consistent way and structural phase transitions can be mapped over a broad optical regime from weak to strong scattering

    Superluminal optical pulse propagation in nonlinear coherent media

    Get PDF
    The propagation of light-pulse with negative group-velocity in a nonlinear medium is studied theoretically. We show that the necessary conditions for these effects to be observable are realized in a three-level Λ\Lambda-system interacting with a linearly polarized laser beam in the presence of a static magnetic field. In low power regime, when all other nonlinear processes are negligible, the light-induced Zeeman coherence cancels the resonant absorption of the medium almost completely, but preserves the dispersion anomalous and very high. As a result, a superluminal light pulse propagation can be observed in the sense that the peak of the transmitted pulse exits the medium before the peak of the incident pulse enters. There is no violation of causality and energy conservation. Moreover, the superluminal effects are prominently manifested in the reshaping of pulse, which is caused by the intensity-dependent pulse velocity. Unlike the shock wave formation in a nonlinear medium with normal dispersion, here, the self-steepening of the pulse trailing edge takes place due to the fact that the more intense parts of the pulse travel slower. The predicted effect can be easily observed in the well known schemes employed for studying of nonlinear magneto-optical rotation. The upper bound of sample length is found from the criterion that the pulse self-steepening and group-advance time are observable without pulse distortion caused by the group-velocity dispersion.Comment: 16 pages, 7 figure
    • …
    corecore