119 research outputs found
Square Integer Heffter Arrays with Empty Cells
A Heffter array is an matrix with nonzero entries
from such that each row contains filled cells and
each column contains filled cells, every row and column sum to 0, and
no element from appears twice. Heffter arrays are useful in
embedding the complete graph on an orientable surface where the
embedding has the property that each edge borders exactly one cycle and one
cycle. Archdeacon, Boothby and Dinitz proved that these arrays can be
constructed in the case when , i.e. every cell is filled. In this paper we
concentrate on square arrays with empty cells where every row sum and every
column sum is in . We solve most of the instances of this case.Comment: 20 pages, including 2 figure
Near-linear Time Algorithm for Approximate Minimum Degree Spanning Trees
Given a graph , we wish to compute a spanning tree whose maximum
vertex degree, i.e. tree degree, is as small as possible. Computing the exact
optimal solution is known to be NP-hard, since it generalizes the Hamiltonian
path problem. For the approximation version of this problem, a
time algorithm that computes a spanning tree of degree at most is
previously known [F\"urer \& Raghavachari 1994]; here denotes the
minimum tree degree of all the spanning trees. In this paper we give the first
near-linear time approximation algorithm for this problem. Specifically
speaking, we propose an time algorithm that
computes a spanning tree with tree degree for any constant .
Thus, when , we can achieve approximate solutions with
constant approximate ratio arbitrarily close to 1 in near-linear time.Comment: 17 page
Secretary Problems: Weights and Discounts
The classical secretary problem studies the problem of selecting online an element (a âsecretaryâ) with maximum value in a randomly ordered sequence. The difficulty lies in the fact that an element must be either selected or discarded upon its arrival, and this decision is irrevocable. Constant-competitive algorithms are known for the classical secretary problems and several variants. We study the following two extensions of the secretary problem:
In the discounted secretary problem, there is a time-dependent âdiscountâ factor , and the benefit derived from selecting an element/secretary e at time t is . For this problem with arbitrary (not necessarily decreasing) functions , we show a constant-competitive algorithm when the expected optimum is known in advance. With no prior knowledge, we exhibit a lower bound and give a nearly matching -competitive algorithm.
In the weighted secretary problem, up to K secretaries can be selected; when a secretary is selected (s)he must be irrevocably assigned to one of K positions, with position k having weight , and assigning object/secretary e to position k has benefit . The goal is to select secretaries and assign them to positions to maximize
the sum of where is the secretary assigned to position k. We give constant-competitive algorithms for this problem.
Most of these results can also be extended to the matroid secretary case for a large family of matroids with a
constant-factor loss, and an O(log rank) loss for general matroids. These results are based on a reduction from various matroids to partition matroids which present a unified approach to many of the upper bounds of Babaioff et al. These problems have connections to online mechanism design. All our algorithms are monotone, and hence lead to truthful mechanisms for the corresponding online auction problems
Packing Returning Secretaries
We study online secretary problems with returns in combinatorial packing
domains with candidates that arrive sequentially over time in random order.
The goal is to accept a feasible packing of candidates of maximum total value.
In the first variant, each candidate arrives exactly twice. All arrivals
occur in random order. We propose a simple 0.5-competitive algorithm that can
be combined with arbitrary approximation algorithms for the packing domain,
even when the total value of candidates is a subadditive function. For
bipartite matching, we obtain an algorithm with competitive ratio at least
for growing , and an algorithm with ratio at least
for all . We extend all algorithms and ratios to arrivals
per candidate.
In the second variant, there is a pool of undecided candidates. In each
round, a random candidate from the pool arrives. Upon arrival a candidate can
be either decided (accept/reject) or postponed (returned into the pool). We
mainly focus on minimizing the expected number of postponements when computing
an optimal solution. An expected number of is always
sufficient. For matroids, we show that the expected number can be reduced to
, where is the minimum of the ranks of matroid and
dual matroid. For bipartite matching, we show a bound of , where
is the size of the optimum matching. For general packing, we show a lower
bound of , even when the size of the optimum is .Comment: 23 pages, 5 figure
Finite geometries and diffractive orbits in isospectral billiards
Several examples of pairs of isospectral planar domains have been produced in
the two-dimensional Euclidean space by various methods. We show that all these
examples rely on the symmetry between points and blocks in finite projective
spaces; from the properties of these spaces, one can derive a relation between
Green functions as well as a relation between diffractive orbits in isospectral
billiards.Comment: 10 page
An Improved Upper Bound for the Ring Loading Problem
The Ring Loading Problem emerged in the 1990s to model an important special
case of telecommunication networks (SONET rings) which gained attention from
practitioners and theorists alike. Given an undirected cycle on nodes
together with non-negative demands between any pair of nodes, the Ring Loading
Problem asks for an unsplittable routing of the demands such that the maximum
cumulated demand on any edge is minimized. Let be the value of such a
solution. In the relaxed version of the problem, each demand can be split into
two parts where the first part is routed clockwise while the second part is
routed counter-clockwise. Denote with the maximum load of a minimum split
routing solution. In a landmark paper, Schrijver, Seymour and Winkler [SSW98]
showed that , where is the maximum demand value. They
also found (implicitly) an instance of the Ring Loading Problem with . Recently, Skutella [Sku16] improved these bounds by showing that , and there exists an instance with .
We contribute to this line of research by showing that . We
also take a first step towards lower and upper bounds for small instances
On the Approximability and Hardness of the Minimum Connected Dominating Set with Routing Cost Constraint
In the problem of minimum connected dominating set with routing cost
constraint, we are given a graph , and the goal is to find the
smallest connected dominating set of such that, for any two
non-adjacent vertices and in , the number of internal nodes on the
shortest path between and in the subgraph of induced by is at most times that in . For general graphs, the only
known previous approximability result is an -approximation algorithm
() for by Ding et al. For any constant , we
give an -approximation
algorithm. When , we give an -approximation
algorithm. Finally, we prove that, when , unless , for any constant , the problem admits no
polynomial-time -approximation algorithm, improving
upon the bound by Du et al. (albeit under a stronger hardness
assumption)
Single source unsplittable flows with arc-wise lower and upper bounds
In a digraph with a source and several destination nodes with associated demands, an unsplittable flow routes each demand along a single path from the common source to its destination. Given some flow x that is not necessarily unsplittable but satisfies all demands, it is a natural question to ask for an unsplittable flow y that does not deviate from x by too much, i.e., yaâxa for all arcs a. Twenty years ago, in a landmark paper, Dinitz et al. (Combinatorica 19:17â41, 1999) proved that there exists an unsplittable flow y such that yaâ€xa+dmax for all arcs a, where dmax denotes the maximum demand value. Our first contribution is a considerably simpler one-page proof for this classical result, based upon an entirely new approach. Secondly, using a subtle variant of this approach, we obtain a new result: There is an unsplittable flow y such that yaâ„xaâdmax for all arcs a. Finally, building upon an iterative rounding technique previously introduced by Kolliopoulos and Stein (SIAM J Comput 31:919â946, 2002) and Skutella (Math Program 91:493â514, 2002), we prove existence of an unsplittable flow that simultaneously satisfies the upper and lower bounds for the special case when demands are integer multiples of each other. For arbitrary demand values, we prove the weaker simultaneous bounds xa/2âdmaxâ€yaâ€2xa+dmax for all arcs a.TU Berlin, Open-Access-Mittel â 202
Perfect Hash Families: The Generalization to Higher Indices
Perfect hash families are often represented as combinatorial arrays encoding partitions of kitems into v classes, so that every t or fewer of the items are completely separated by at least a specified number of chosen partitions. This specified number is the index of the hash family. The case when each t-set must be separated at least once has been extensively researched; they arise in diverse applications, both directly and as fundamental ingredients in a column replacement strategy for a variety of combinatorial arrays. In this paper, construction techniques and algorithmic methods for constructing perfect hash families are surveyed, in order to explore extensions to the situation when each t-set must be separated by more than one partition.https://digitalcommons.usmalibrary.org/books/1029/thumbnail.jp
- âŠ