
Perfect Hash Families: The
Generalization to Higher Indices

Ryan E. Dougherty and Charles J. Colbourn

Abstract Perfect hash families are often represented as combinatorial ar-
rays encoding partitions of k items into v classes, so that every t or fewer
of the items are completely separated by at least a specified number of the
chosen partitions. This specified number is the index of the hash family. The
case when each t-set must be separated at least once has been extensively re-
searched; they arise in diverse applications, both directly and as fundamental
ingredients in a column replacement strategy for a variety of combinatorial
arrays. In this paper, construction techniques and algorithmic methods for
constructing perfect hash families are surveyed, in order to explore exten-
sions to the situation when each t-set must be separated by more than one
partition.

1 Introduction

Suppose that there are k items, and each is assigned one of v values. Our
objective is to ensure that each set of t items receives t different values;
when this occurs, the t items are separated. Evidently if v ≥ k, each item
can be assigned a value that is different from all others assigned, so that
every set of t items is separated. However, when v < k, some two items
necessarily receive the same value; then any t-set containing these two cannot
be separated. When this occurs, suppose that N assignments of values to
items are chosen, rather than one. Then one can ask: how small can N be so

R.E. Dougherty
Computing, Informatics, and Decision Systems Engineering, Arizona State University

e-mail: ryan.dougherty@asu.edu

C.J. Colbourn

Computing, Informatics, and Decision Systems Engineering, Arizona State University
e-mail: charles.colbourn@asu.edu

1

2 R.E. Dougherty and C.J. Colbourn

that every t-set of items is separated in at least λ of the assignments? This
easily stated combinatorial question is challenging, and many open problems
remain despite substantial research effort. It is an important question as well,
with applications described next.

Mehlhorn [49] originally examined this question to provide an efficient way
to store and retrieve frequently used information; in that context, the assign-
ment of values to the items is treated as a hash function [32], and hence the
question is phrased as one about families of hash functions. Applications to
derandomization [6], circuit complexity [51] , and cryptography [16, 38, 61]
arose. Subsequently, Stinson, Trung, and Wei [62] established applications of
such families (with λ = 1) to construct numerous other combinatorial ob-
jects, such as separating systems, key distribution patterns, cover-free fam-
ilies, and secure frameproof codes. A general strategy, column replacement,
has extended their range of applications into testing and measurement [24]
and compressive sensing [27], among others.

In many of these applications, error correction through redundancy in the
separation is needed; a few examples are given in [1, 44, 57]. Despite this,
there has been little examination of such hash families with λ > 1, with the
notable exception of [3,4]. In this paper, we therefore survey a number of the
main construction methods for such hash families, with an eye to extending
them to treat cases with λ > 1 when possible. Our emphasis is on fixed
values of λ ≥ 1; we only treat cases when λ increases as a function of N
in the concluding remarks. We focus on combinatorial aspects, discussing in
particular constructive approaches to produce explicit examples for use in
applications.

In order to develop and extend these ideas formally, we extend the presen-
tation in [24], employing the very general language of t-restrictions [5]. Let N ,
k, v1, · · · , vN , x1, · · · , xk, t, and λ be positive integers. An abstract simplical
complex (ASC), A, is a family of non-empty finite subsets of a set Γ that
is closed under non-empty subsets; the dimension of an ASC, dim(A), is the
maximum of |X| − 1, for all X ∈ A. Let H be an abstract simplical complex
on k vertices such that the maximum cardinality of any set in H is t; label the
vertices of H as c1, · · · , ck. Let Σi be a vi-ary alphabet not containing ? for
all 1 ≤ i ≤ N , and let ∆j be an xj-ary alphabet also not containing ? for all
1 ≤ j ≤ k. Define an N × k array A in which the ith row of A contains sym-
bols from Σi∪{?}, and the jth column of A contains symbols from ∆j ∪{?}.
If there exist i, j for which Σi ∩ ∆j = ∅, the entry in this cell must be ?.

Let ∆ =
⋃k
j=1∆j . A t-restriction is a χ-tuple T = ((P1, T1), · · · , (Pχ, Tχ)),

where Pi ⊆ ∆t and Ti ∈ {∃,∀}. Each set Pi is a demand. For each Pi, if
Ti = ∃, then at least λ rows of A contains some element of Pi; if Ti = ∀, then
for each element of Pi, at least λ rows contain that element. Let ∂i(S) be
the set of

(
t
i

)
sets of (t− i)-tuples, obtained by deleting the i chosen columns

from each s ∈ S. An array A = (aij) λ-satisfies a given Pi and Ti if and only
if for all 0 ≤ j ≤ t and any set S ∈ H,

Perfect Hash Families 3

1. if Ti = ∃, then for each P ∈ ∂j(Pi), there exist λ rows 1 ≤ r1 < · · · < rλ ≤
N such that (ar`,ci1 , · · · , ar`,ci|S|) ∈ P for all 1 ≤ ` ≤ λ and S ∈ H when

|S| = t− j; or
2. if Ti = ∀, then for each P ∈ ∂j(Pi), and for all (σ1, · · · , σt−j) ∈
P ∩

∏t−j
m=1∆cm , there exist λ rows 1 ≤ r1 < · · · < rλ ≤ N such that

(ar`,ci1 , · · · , ar`,ci|S|) = (σ1, · · · , σ|S|) for all 1 ≤ ` ≤ λ and S ∈ H when

|S| = t− j.

If the array λ-satisfies each of the given Pi and Ti, then the array λ-satisfies
T . If an array A on N rows and k columns (and corresponding symbol set
cardinalities for rows and columns) λ-satisfies a t-restriction T , denote it by
TRAλ(N, k,H, (v1, · · · , vN), (x1, · · · , xk), T). If v1 = · · · = vN , A is uniform;
otherwise, it is mixed. If x1 = · · · = xk, A is homogeneous; otherwise, it
is heterogeneous. When λ = 1, we omit it from the notation. When T1 =
· · · = Tχ, T is a monotone t-restriction. Most literature has concentrated on
monotone t-restrictions with H being the hypergraph containing all possible
hyperedges of size at most t on k vertices, and λ = 1.

This framework is very general, and it encompasses a number of well-
studied combinatorial arrays. We establish more restrictive notation for some
of them next. Choose an integer t, and form the set Mt of multisets whose
elements contain nonnegative integers, for which the sums of each element
in a multiset sum to t. Let W ⊆ Mt. A W-separating hash family meets
the following condition: when C = {c1, · · · , ct} ⊆

(
[k]
t

)
and W1, · · · ,Ws is

a partition of C with {|W1|, · · · , |Ws|} ∈ W, define D = {(y1, . . . , yt) ∈
∆c1 × · · · ×∆ct : yc = yc′ only if c, c′ belong to the same class of W}. Then
the demand (D,∃) is met. When each demand is the stricter requirement that
D = {(y1, . . . , yt) ∈ ∆c1 × · · · × ∆ct : yc = yc′ if and only if c, c′ belong to
the same class of W}, the hash family isW-partitioning. WhenW consists of
all partitions in Mt containing s parts, a W-separating hash family is (t, s)-
distributing. In both cases, when W contains a single set W = {w1, . . . , ws},
the family is separatng (or partitioning) of type {w1, . . . , ws}.

Of primary concern here are the (t, s)-distributing hash families with s = t.
Such a family is a perfect hash family. In order to refer to objects of this
type, we employ standard notation. A perfect heterogeneous hash family is
denoted as a PHHFλ(N ; k, (v1, · · · , vN), t), and a homogeneous one is written
as a PHFλ(N ; k, v, t). If a PHHFλ A λ-satisfies a given Pi, then it λ-separates
these columns.

An example of a (homogeneous) PHF1(6; 12, 3, 3) is given in Figure 1. It
is a 6 × 12 array (6 rows, 12 columns) on the three symbols {0, 1, 2}, in
which every 3-set of columns is 1-separated. For the 6× 3 subarray involving
columns 8, 9, and 10, only the last row consists of distinct symbols. Also,
148 of the 3-sets are exactly 1-separated; 44 are exactly 2-separated; 19 are
exactly 3-separated; 4 are exactly 4-separated; and none are 5 or 6-separated.
There is no PHF(5; 12, 3, 3) [9], so this array has the fewest possible rows.

4 R.E. Dougherty and C.J. Colbourn

↓ ↓ ↓
0 1 2 2 1 2 2 0 1 1 0 0

0 2 1 0 2 2 2 1 0 1 2 1
1 0 0 2 2 2 1 1 2 1 0 2
2 0 1 1 2 0 2 0 1 1 2 1
2 0 2 1 2 1 0 2 2 1 1 0

→ 2 0 1 2 1 1 2 2 0 1 2 1

Fig. 1 A perfect hash family PHF1(6; 12, 3, 3).

The notation SHHF(N ; k, (v1, · · · , vN), {w1, · · · , ws}) is used for a separat-
ing hash family. More simply SHF(N ; k, v, {w1, · · · , ws}) is used when it is ho-
mogeneous. Figure 2 gives an example of a (homogeneous) SHF(3; 16, 4, {1, 2}).
It is a 3× 16 array on the four symbols {1, 2, 3, 4} that is not a perfect hash
family, because columns 11, 15, and 16 are separated by none of the three
rows. However, in the 3× 3 subarray consisting of these three columns, each
of the three {1, 2}-separations is accomplished by a row.

↓ ↓ ↓
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

→ 1 2 3 4 2 1 4 3 3 4 1 2 4 3 2 1

Fig. 2 A SHF(3; 16, 4, {1, 2}).

A distributing hash family is denoted by DHHF(N ; k, (v1, · · · , vN), t, s); as
before, a homogeneous DHHF is a DHF(N ; k, v, t, s). Figure 3 gives a (het-
erogeneous) DHHF(10; 13,v, 5, 2) with v = (9, 9, 9, 3, 3, 3, 3, 4, 5, 2). Often one
uses an exponential notation that indicates the repetition in the exponent:
v = (9334415121).

↓ ↓ ↓ ↓ ↓
6 7 8 3 4 0 2 2 3 0 5 1 1
3 1 1 7 2 6 8 4 3 0 2 0 5
8 5 1 4 2 3 2 6 7 0 1 3 0
0 2 0 2 2 0 0 1 1 1 1 2 0

0 0 2 1 1 1 2 0 0 2 2 0 1

→ 1 1 2 2 2 0 1 0 0 2 1 0 0

1 0 1 2 0 0 2 0 0 1 2 2 1
1 1 0 1 0 3 2 0 2 0 1 0 2
0 0 3 0 1 0 0 2 4 0 0 1 0

0 ? ? ? ? 1 ? ? 1 ? ? 0 1

Fig. 3 A DHHF(10; 13,v, 5, 2) with v = (9334415121).

Hash families in general, and perfect hash families in particular, play a
central role in the construction of arrays that satisfy various t-restrictions.

Perfect Hash Families 5

Indeed, they form the essential ingredients in a general technique known as
composition or column replacement, which we describe next.

Construction 1 Suppose there exist:

1. A, a PHFχ(M ; `, k, t); and
2. B, a TRAλ(N ; k,H, (vs11 · · · , v

sρ
ρ), xk, T) with N =

∑ρ
i=1 sivi and H =(

[k]
t

)
.

Construct an NM×` array, C, by replacing each symbol γ in A by the column
indexed by γ in B. Then C is a

TRAχλ(NM ; `,H′, ((M · v1)s1 · · · , (M · vρ)sρ), x`, T)

with H′ =
(
[`]
t

)
.

Construction 1 provides strong motivation for the study of perfect hash
families, as it underlies the easy generation of ‘large’ arrays meeting t-
restrictions. We outline one example of this, introducing a well-studied
t-restriction that employs universal quantification. When for every t-set
{c1, . . . , ct} of columns, the demand (∆c1 × · · · ×∆ct ,∀) is to be met, the ar-
ray is a mixed-level covering array, denoted by MCA(N ; t, (v1, · · · , vk)); when
the array is homogeneous, it is a covering array, denoted by CA(N ; t, k, v). In
any CA(N ; k, v, t), symbols can be permuted in each column independently
so that the first row consists entirely of a single symbol. This yields a con-
stant row, and when the CA has been modified in this way, it is standardized.
Figure 4 gives an example of a standardized CA(13; 3, 10, 2).

0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1

1 1 1 0 1 0 0 0 0 1
1 0 1 1 0 1 0 1 0 0

1 0 0 0 1 1 1 0 0 0

0 1 1 0 0 1 0 0 1 0
0 0 1 0 1 0 1 1 1 0

1 1 0 1 0 0 1 0 1 0

0 0 0 1 1 1 0 0 1 1
0 0 1 1 0 0 1 0 0 1

0 1 0 1 1 0 0 1 0 0

1 0 0 0 0 0 0 1 1 1
0 1 0 0 0 1 1 1 0 1

Fig. 4 A CA(13; 3, 10, 2).

In [23], a restriction on DHHFs is applied to gain an additional improve-
ment on Construction 1 when the TRA is a covering array. Partitioning hash
families are distributing hash families except not only for any partition of
t-columns into s parts (possibly empty) the entries in any two different parts

6 R.E. Dougherty and C.J. Colbourn

are pairwise disjoint, but the symbols in each part are all equal; denote
it by a PaHF(N ; k, v, t, s). It is shown there that a DHF(N ; k, 2, t, 2) is a
PaHF(N ; k, 2, t, 2). Notably, partitioning hash families are appealing because
if a CA(N + ρ; v, k, v) with ρ constant rows and a PaHF(M ; `, k, t, v) exist,
then a CA(NM + ρ; t, `, v) exists; this shows that the ingredient CA can be
of a different strength than the PaHF. However, PaHFs appear difficult to
construct. For recent work on probabilistic methods for PaHFs, see Cassels
and Godbole [20].

For some specific t-restrictions, such as covering arrays, one may achieve a
smaller number of rows while still satisfying the restriction (e.g., standardiz-
ing the CA). Introducing heterogeneity can in some cases provide even more
improvements; we content ourselves for now with the homogeneous case. By
observing the generality of the framework, much of this survey can be appro-
priately applied to other types of t-restrictions.

Because a PHF with M rows leads to a TRA with NM rows, one wants the
PHF ingredient to have as few rows as possible. The perfect hash family (row)
number, PHFNλ(k, v, t), is the minimum N for which a PHFλ(N ; k, v, t) ex-
ists. This notation does not extend naturally to heterogeneous hash families,
because the number of rows is to be determined. To circumvent this nota-
tional issue, we often instead consider maximizing the number of columns
rather than minimizing the number of rows. More formally, the perfect hash
family (column) number PHHFKλ(N,v, t) is defined to be the maximum k for
which a PHHFλ(N ; k,v, t) exists. For homogeneous hash families, the nota-
tion PHFKλ(N, v, t) is used. For homogeneous families, one can easily change
between row and column numbers:

PHFNλ(k, v, t) = min(N : PHFKλ(N, v, t) ≥ k)

PHFKλ(N, v, t) = max(k : PHFNλ(k, v, t) ≤ N)

A PHFλ(N ; k, v, t) is optimal if N = PHFNλ(k, v, t). Much study has been
devoted to determining perfect hash family numbers for as many parameters
as possible, as well as what structure underlies optimal PHFs. Moreover,
one would hope to provide an explicit representation of the PHF with those
parameters, particularly for constructing other combinatorial objects and t-
restrictions. If this is not possible, then knowing asymptotics on this quantity
is important in helping determine asymptotics for other objects.

2 The Basics

First we state elementary relationships among perfect hash family numbers.
In order to treat heterogeneous situations as well, we employ perfect hash
family column numbers.

Additional rows cannot reduce the number of columns that can be achieved:

Perfect Hash Families 7

Fact 1 PHHFKλ(N, (v1, . . . , vN), t) ≤ PHHFKλ(N+1, (v1, . . . , vN+1), t) when-
ever vN+1 ≥ 0.

Reducing the size of column sets to be separated also cannot reduce the
number of columns.

Fact 2 PHHFKλ(N, (v1, . . . , vN), t) ≤ PHHFKλ(N, (v1, . . . , vN), t− 1) if t ≥
2.

Reducing λ enables one to remove rows without reducing the number of
columns.

Fact 3 PHHFKλ(N, (v1, . . . , vN), t) ≤ PHHFKλ−1(N−1, (v1, . . . , vi−1, vi+1, . . . vN), t)
if λ ≥ 2 and 1 ≤ i ≤ N .

Increasing the number of symbols in a row cannot reduce the number of
columns.

Fact 4 PHHFKλ(N, (v1, . . . , vN), t) ≤ PHHFKλ(N, (v1, . . . , vi−1, vi+1, vi+1, . . . vN), t)
if 1 ≤ i ≤ N .

Changing the number of columns is also of interest. Removing a column
is straightforward, but adding a column can leave

(
k
t−1
)
t-sets of columns

unseparated. Naively one could add λ rows for each to obtain

Fact 5 PHFNλ(k, v, t) ≤ PHFNλ(k + 1, v, t) ≤ PHFNλ(k, v, t) + λ
(
k
t−1
)
.

Walker and Colbourn [65] show a better bound, later generalized by Mar-
tirosyan and van Trung [48]. [Ryan: maybe add unpublished work of mine as
a short mention here?]

In order to avoid situations in which a row does not have enough symbols
to separate any t-set of columns, we have:

Fact 6 PHHFKλ(N, (v1, . . . , vN), t) = PHHFKλ(N−1, (v1, . . . , vi−1, vi+1, . . . vN), t)
if vi < t.

One can also consider reducing the number of symbols in a row,:

Fact 7 PHHFKλ(N, (v1, . . . , vN), t) ≤
⌈
vi−1
vi

PHHFKλ(N, (v1, . . . , vi−1, vi − 1, vi+1, . . . vN), t)
⌉

if 1 ≤ i ≤ N .

Iterating Fact 7 until Fact 6 applies, one obtains

Theorem 1. (Martirosyan and van Trung [48, Theorem 7.2])

PHFN(dk(t−1)v e, v, t) ≤ PHFN(k, v, t) − 1. Equivalently, PHFK(N − 1, v, t) ≥
d t−1v PHFK(N, v, t)e.

8 R.E. Dougherty and C.J. Colbourn

Finally we describe a row amalgamation method for reducing the number
of rows, which essentially comes from [15,59]. In a PHHFλ(N ; k, (v1, . . . , vN), t),
select two rows i and j with 1 ≤ i < j ≤ N . From these two, form a single
row whose entries are ordered pairs, with the first coordinate being the entry
from row i and the second from row j. Delete rows i and j (with vi and vj
symbols), and add the new row with vivj symbols. This method can reduce
the number of times a t-set of columns is separated, but this number cannot
be reduced to 0.

Fact 8 PHHFKλ(N, (v1, . . . , vN), t) ≤ PHHFKmax(1,λ−1)(N−1, (w1, . . . , wN−1), t)
whenever 1 ≤ i < j ≤ N , {v1, . . . , vN} \ {vi, vj} = {w1, . . . , wN−2}, and
wN−1 = vivj.

Now let us dispense with some easier parameter sets. If N < λ, there are
insufficient rows to λ-separate any t-set; so we assume that N ≥ λ. Now
PHFNλ(k, v, 1) = λ for all k, v ≥ 1, and λ ≥ 1, because any row separates
all 1-sets of columns. Henceforth we only consider cases with t ≥ 2. Fact 3
underlies the following:

Fact 9 PHHFKλ(λ, (v1, . . . , vλ), t) = min(vi : 1 ≤ i ≤ λ).

Because of this, we concentrate on cases in which no λ rows are each
permitted to contain k or more distinct symbols. It is natural to ask whether
one can obtain larger values of k when the number of rows is allowed to
exceed λ.

In general, recursive constructions combine ingredient PHFs to make
‘larger’ ones. Many of the facts given provide easy examples of recursive
constructions. Of course, because being a perfect hash family of index λ is
a t-restriction, so column replacement or composition (Construction 1) is
a recursive construction. In Section 3, Theorem 3 also provides a recursive
construction.

3 Few rows

No PHHFλ with fewer than λ rows exists; when there are λ rows, Fact
9 applies. Suppose that v1 ≥ · · · ≥ vN ≥ t and that a PHHFλ(N ; vλ +
1, (v1, . . . , vN), t) exists. Using Fact 3 we remove the first λ − 1 rows to ob-
tain a PHHF1(N − λ + 1; vλ + 1, (vλ, . . . , vN), t). Each row contains at least
one pair of columns in which a symbol is repeated. Let {γi, γ′i} be such a
pair of column indices with a repeated symbol in row i for λ ≤ i ≤ N . Then⋃N
i=λ{γi, γ′i} is a set of at most 2(N − λ + 1) columns that is separated by

no row of the PHHF1. When N ≤ t
2 + λ − 1, this is a contradiction. Hence

we conclude

Fact 10 When v1 ≥ · · · ≥ vN ≥ t, PHHFKλ(N, (v1, . . . , vN), t) > vλ only if
N ≥ d t+1

2 e+ λ− 1.

Perfect Hash Families 9

Although this condition is not sufficient whenever v1 ≥ · · · ≥ vN ≥ t, it
does establish, for example, that PHFK1(N, v, t) = v whenever 1 ≤ N ≤ t

2 .
In order to increase the number of columns, one therefore requires further
rows.

We describe a PHFλ(s + λ;m(s + λ),m(s + λ − 1) + 1, 2s + 1) whenever
m ≥ 2 and s ≥ 1, generalizing a result of Walker and Colbourn [65] when
λ = 1.

Construction 2 Let s ≥ 1, m ≥ 2, and λ ≥ 1. A PHFλ(s+λ;m(s+λ),m(s+
λ−1)+1, 2s+1) is constructed as follows. Form a set of m(s+λ−1) elements
X, and let∞ be an element not in X. Then the desired PHFλ contains exactly
one occurrence of ∞ in each column, and contains each element of X exactly
once in each row.

Now Construction 2 yields more columns than symbols, and by Fact 10
it has the fewest rows for which this is possible with strength t = 2s + 1.
As a function of v, k grows linearly. This linear relationship is not restricted
to the minimum number of rows, Blackburn [13] explored this phenomenon
when λ = 1, and explicit computations, again for λ = 1, are pursued in [26].
We apply Blackburn’s techniques to treat all λ.

To begin, we suppose that k > v1 ≥ · · · ≥ vN , for otherwise we can either
reduce λ by Fact 3 or conclude that one row suffices when λ = 1. Then
every row contains at least one element that is repeated. The key idea is to
classify the entries in each row; an entry is a singleton for this row when it
appears exactly once in the row, and a replicate otherwise. Now suppose that
a PHHFλ(N ; k, (v1, . . . , vN), N−(λ−2)+s) with 0 ≤ s ≤ t−1

2 has a column γ
with at most s+λ−1 singletons, and hence at least N−s−λ+1 = t−2s−1
replicates. Form a set C of t−2s column indices by including γ, and a column
index from each of the t − 2s − 1 rows that contains the same symbol as in
column γ. Now choose any s further rows, and for each add a pair of column
indices for columns containing the same symbol in this row to C. In total, C
now contains at most t− 2s+ 2s = t column indices, and C is not separated
in any of t − 2s − 1 + s = N − λ + 1 rows. But then C is not λ-separated,
because at most λ− 1 rows remain.

So λ + s = t − N + 2(λ − 1) is the minimum number of singletons in
each column. In a row having vi symbols, at most vi − 1 can be singletons.
However, there must be at least k(t − N + 2(λ − 1)) singletons in total. It
follows that

k(t−N + 2(λ− 1)) ≤
N∑
i=1

(vi − 1).

Hence we obtain

Lemma 1. A PHHFλ(N ; k, (v1, . . . , vN), t) with N − (λ − 2) ≤ t ≤ 2(N −
(λ− 2))− 1 satisfies

10 R.E. Dougherty and C.J. Colbourn

k ≤ max

(
t, v1, . . . , vN ,

∑N
i=1(vi − 1)

t−N + 2(λ− 1)

)
.

Lemma 1 ensures that for a PHFλ(N ; k, v, t) with N − (λ − 2) ≤ t ≤
2(N − (λ− 2))− 1, (or, equivalently, t+1

2 + λ− 2 ≤ N ≤ t+ λ− 2), k grows
linearly as a function of v.

For λ = 1, Blackburn [13] establishes that when N = t + λ − 1, k grows
superlinearly in v. We extend his construction to treat all values of λ next.

Construction 3 Let t ≥ 2, λ ≥ 1, and a ≥ 2. Then there exists a PHFλ(t+
λ−1; at+λ−1, at−λ−2, t). The set of all vectors from {1, . . . , a}t+λ−1 index the
columns. In each column, in the ith row place the vector from {1, . . . , a}t+λ−2
obtained by deleting the entry in the ith coordinate of the column index.

The verification that this is a PHFλ(t + λ − 1; at+λ−1, at−λ−2, t) comes
essentially from [13]. Suppose to the contrary that there are t rows ρ1, . . . , ρt
in which t columns γ1, . . . , γt are not separated. Form a graph G on vertex
set {γ1, . . . , γt}; for each ρ ∈ {ρ1, . . . , ρt}, place an edge in G between some
two vertices whose columns share a symbol in row ρ, and colour the edge
with ρ. Now G has t vertices and t edges (of t different colours), and hence
contains a cycle, say on vertices {v0, . . . , v`}. Let ei = {vi, vi+1} for 0 ≤ i < `
have colour ci, and let e` = {v`, v0} have colour c`. For 0 ≤ i ≤ `, the two
columns indexed by ei agree in coordinate ci and in no other. Because all edge
colours in the cycle are distinct, the columns indexed by each of {e0, . . . , e`−1}
agree in coordinate c`, but e` requires that they disagree, which yields the
contradiction.

Fact 1 now guarantees that k grows superlinearly in v whenever N ≥
t + λ − 1, in contrast with the requirement that PHFKλ(t + λ − 2, v, t) ≤
max(v, 1

λ (t+ λ− 2)(v − 1)) from Lemma 1.
Of course, practical interest is in obtaining a large number of columns, but

understanding the situation with few rows has an important consequence.

Theorem 2. Let N = α(t − 1) + β with 1 ≤ β ≤ t − 1. Then PHFKλ(N +

λ− 1, v, t) ≤ PHFK1(N, v, t) ≤ vα(t− 1 + β(v − 1)) ≤ (t− 1)vd
N
t−1 e.

Proof. Consider a PHF1(N ; k, v, t). Repeatedly amalgamate rows (Fact 8) to
form a PHHF1(t − 1; k, ((vα+1)β(vα)t−1−β), t). Apply Lemma 1 to conclude
that k ≤ vα(t− 1 + β(v − 1)).

Row amalgamation can reduce λ when it exceeds 1, and hence Theorem 2
employs amalgamation only when λ = 1. Consequently, it yields a useful
upper bound when λ = 1, but we anticipate that the bound is weak when
λ > 1.

In the ‘linear’ range when t+1
2 + λ − 2 ≤ N ≤ t + λ − 2, Lemma 1 es-

tablishes that for some constant cN−(λ−1),t−N−(λ−1),λ, the existence of a
PHFλ(N ; k, v, t) requires that k ≤ cN−(λ−1),t−N−(λ−1),λv. Blackburn [13] de-
vises a linear programming formulation to explicitly determine the constant

Perfect Hash Families 11

dN,t−N so that k = dN,t−Nv(1 + o(1)) when λ = 1. In order to establish the
lower bound asymptotically, he develops a construction technique using cov-
erings. In [26], the method is extended to produce explicit constructions for
small values of v, and to treat the generalization to distributing hash families
(with λ = 1).

The key idea is to employ hash families with an additional property. A
DHHF(t; k, (v1, . . . , vt), t, p) is fractal if t ≤ 2, or if, for each row j, deleting row
j yields a fractal DHHF(t−1; k, (v1, . . . , vj−1, vj+1, . . . , vt), t−1,min(p, t−1)).
Fractal PHHFs are fractal DHHFs with p = t. A DHHF(t; k, (v1, . . . , vn), t, p)
is α-fractal if it is fractal and at least α rows of the DHHF contain all dis-
tinct symbols. In addition to fractal DHHFs, we require a second ingredi-
ent. An (n,m, d)-covering of type (ρ0, . . . , ρm−1) is a collection of n subsets
{P0, . . . , Pn−1} of {0, . . . ,m− 1} satisfying:

1. |{Pr : 0 ≤ r < n, Pr 3 c}| = ρc for 0 ≤ c < m; and
2. For every S ⊆ {0, . . . ,m − 1} with |S| = d, S is a subset of some set in
{P1, ..., Pn−1}.

Extending the methods in [13] to use fractal and heterogeneous ingredients,
and distributing hash families rather than just perfect ones, we have the
following.

Theorem 3. [26] Suppose that there exist

• an (n,m, d)-covering P = {P0, . . . , Pn−1} of type (ρ0, . . . , ρm−1), and
• for each 0 ≤ c < m, a ρc-fractal DHHF(n; kc, (v0,c, . . . , vn−1,c), n, p) in

which, for 0 ≤ r < n, row r contains all distinct symbols when c ∈ Pr.

Then there exists a DHHF(n;
∑m−1
c=0 kc, (w0, . . . , wn−1), n+ d, p′) where

wr =
∑m−1
c=0 vr,c for 0 ≤ r < n, and

p′ =

{
p if p < n− d
n+ d if p ≥ n− d.

One easy result uses the trivial (
(
m
d

)
,m, d)-covering:

Corollary 1. Let m > d ≥ 1 be integers. Suppose that a fractal

PHHF(
(
m−1
d

)
;κ, (w0, . . . , w(m−1

d)−1),
(
m−1
d

)
)

exists. Let σ be the sum of the m − d largest elements in {wi : 0 ≤ i ≤(
m−1
d

)
− 1}. Then a PHF(

(
m
d

)
;mκ, dκ+ σ,

(
m
d

)
+ d) exists.

A sufficient condition for a PHHF to be fractal establishes that fractal
PHHFs are common; nevertheless, not all PHHFs are fractal.

Lemma 2. [26] If a PHHF(t; k, (v1, . . . , vt), t) has at most one singleton in
each row, it is fractal.

12 R.E. Dougherty and C.J. Colbourn

It is not clear whether there is a useful generalization of the fractal def-
inition to cases when the strength is not the same as the number of rows,
although a variant of this idea is used in [30] in a recursive construction.
Theorem 3 gives a powerful tool for the construction of DHHFs with few
rows, but one needs many ingredients in order to apply it effectively. We now
therefore turn to construction techniques.

4 The Connection with Codes

One direct method for constructing a variety of hash families relies on the
existence of error-correcting codes. A code with parameters (n, k, d)q is a
set of k distinct vectors (codewords) of length n over an alphabet of size
q, so that every two distinct codewords are at Hamming distance at least
d. Then Aq(n, d) denotes the largest k for which there is a (n, k, d)q code,
and A(n, d, w) denotes the largest k for which there is a (n, k, d)2 code in
which each cod word has weight w (i.e., w 1’s). See [19] for some bounds on
A(n, d, w). Determining exact values for Aq(n, d) and A(n, d, w) in general
remains a major challenge.

Alon [2] shows a connection between codes and PHF1s; see also Atici et
al. [10]. We give the easy generalization for higher index:

Theorem 4. If there is an (n, k, d)q code, then for any t, λ such that
(
t
2

)
<

n−λ+1
n−d , there is a PHFλ(n; k, q, t).

Proof. Let C be an (n, k, d)q code. Construct an array A that has the code-
words of C as its columns. Let L = {c1, · · · , ct} be a set of t columns of A.
Two distinct columns of L can agree in at most n− d rows, so the number of
rows in which not all columns of L disagree is at most (n − d)

(
t
2

)
. Provided

that (n− d)
(
t
2

)
< n− λ+ 1, A has at least λ rows that separate L.

In general, Theorem 4 yields a PHF from a code, but not every PHF need
arise in this way. However, when t = 2 the correspondence is exact (see
Mehlhorn [49] and Atici, Magliveras, Stinson, and Wei [10] when λ = 1):

Theorem 5. An (n, k, λ)q code is equivalent to a PHFλ(n; k, q, 2).

It follows that PHFK1(N, v, 2) = vN and hence PHFN1(k, v, 2) = d log klog v e.
By considering all codewords in {0, . . . , v − 1}N whose entries sum to 0
(mod v), one has PHFK2(N, v, 2) = vN−1. When λ ≥ 3, one wants (n, k, d)q
codes with d ≥ 3. Numerous constructions and bounds are known [47], but
in general exact values are not.

There is a PHHF1(N ;
∏N
i=1 vi, (v1, · · · , vN), 2) for anyN ≥ 1 and v1, · · · , vN ≥

2, obtained by taking all possible column vectors. In the heterogeneous case,
one has a correspondence with codewords in which each coordinate has its
own alphabet, but such codes have not been much studied.

Perfect Hash Families 13

Turning to cases with t ≥ 3, Theorem 4 has been extensively employed,
particularly to Reed-Solomon codes to make PHFs with λ = 1 [10]. We formu-
late a generalization using design-theoretic terminology. A transversal design,
TD(s, k, n) is a triple (V,G,B) where V is a set of kn points, partitioned into
k groups G = {G1, · · · , Gk}, and |Gi| = n for all i. Furthermore, B contains
ns blocks of size k with |Bi ∩ Gj | = 1 for all i, j, and |Bi ∩ Bj | ≤ s for all
i 6= j. A standard construction of transversal designs over the finite field Fq
follows.

Construction 4 A TD(s, k, q) with k ≤ q+1 exists. Let X = {x1, . . . , xk} ⊆
Fq ∪ {∞}. The elements of the TD are Fq × X. For each polynomial a0 +
a1y + · · · + as−1y

s−1 of degree s − 1 with coefficients from Fq, form a block
that contains element (b, z) whenever z ∈ X and (1) b = a0 when z =∞, or
(2) b = a0 + a1z+ · · ·+ as−1z

s−1 otherwise (all arithmetic performed in Fq).

A transversal design constructed in this manner is linear. Treating the
blocks of the TD(s, k, q) from Construction 4 as columns and the elements
of X as rows, we obtain a k × qs array C on q symbols. In fact, because
the difference between two polynomials of degree at most s − 1 is also a
polynomial of degree at most s− 1, and such a polynomial has at most s− 1
roots, the columns of C form a (k, qs, k−s)q code, so Theorem 4 applies. When
constructed in this way, the PHFλ is linear as well. However, because the code
has a natural algebraic interpretation, much more can be said. Suppose that
there is a set X for which every set t polynomials of degree s − 1 disagree
on some value of X. This can arise when |X| ≤ (s − 1)

(
t
2

)
. For example,

Blackburn [14] shows that a PHF(3; r3, r2, 3) exists for all r ≥ 2, and that a
PHF(6; p2, p, 4) exists for all primes p ≥ 17 or p = 11. This phenomenon has
been extensively examined when λ = 1. A PHF is optimal linear if it is linear
and no linear PHF exists having fewer rows. Blackburn [14] provides explicit
constructions of PHFs, some of which are optimal.

Blackburn and Wild [17] showed that if q is a sufficiently large prime power,
there is an optimal linear PHF(s(t−1); qs, q, t) for s, t ≥ 2. For specific choices
of s and t, characterizations of the number of rows that suffice for small prime
powers q have been carried out by Barwick and Jackson [11,12], and Colbourn
and Ling [29]. These provide numerous explicit examples of PHF1s that are
easily constructed. The extension of larger values of λ is straightforward.

It remains an open question whether an optimal PHF exists whenever an
optimal linear PHF exists [14, 17]. The linear perfect hash families always
consist of rows in which the numbers of occurrences of each symbol are as
equal as possible. Of course, this equireplication cannot be required for all
parameter sets; consider, for example, Construction 2. When s = 1,m = 2,
and λ = 1, it is possible to prove that the corresponding PHF2s have a single
equivalence class, and so every row of any PHF1(2; k, v, 3) arising from this
construction must have this property. Nevertheless, it appears plausible that
once the number of rows is large enough, every row can be required to be

14 R.E. Dougherty and C.J. Colbourn

nearly equireplicated. If true, this constraint could simplify the development
of further constructions.

However, we do not expect that linear PHFs lead to the largest number
of columns. Consider, for example, PHFK(3, v, 3). By [14], PHFK(3, v, 3) =
Ω(v1.5); however, Walker and Colbourn [65] found solutions for small v that
suggest a larger growth rate, and posed the question of whether PHFK(3, v, 3) =
o(v2). Fuji-Hara [39] constructs PHF(3; v5, v3, 3) and PHF(3; v2(v + 1), v2, 3)
for a prime power v ≥ 3, to establish that PHFK(3, v, 3) = Ω(v5/3). Shang-
guan and Ge [58] solved the question of Walker and Colbourn: For sufficiently
large v and arbitrary ε > 0, that q2−ε < PHFK(3, v, 3) = o(v2). A similar
result for PHFK(4, v, 4) is also proved.

One does not need transversal designs constructed over the field Fq in
order to produce a code. It is well known that a TD(2, k, v) is equivalent to
k− 2 mutually orthogonal latin squares of side v (see [25], for example). Via
this connection, one can generalize a result of Stinson, Wei, and Zhu [63] to
λ ≥ 1, by also employing Theorem 4:

Theorem 6. [63] If there are at least s =
(
t
2

)
+ λ − 2 MOLS of order n,

there exists a PHFλ(s+ 2 + λ;n2, n, t).

The same authors generalize this statement to mutually orthogonal n×m
latin rectangles on max(m,n) symbols, obtaining a PHF1 with mn columns.
Dinitz, Ling, and Stinson [34] establish in some cases that the number of rows
employed by Theorem 6 can be reduced by ensuring that the corresponding
TD avoids certain forbidden configurations.

Another generalization of transversal designs is to block designs. Let X be
a set of v points, and B be a set of b subsets of X, called blocks of X each
with k points. Then (X,B) is a balanced incomplete block design (BIBD) if
every point occurs in r blocks, and every pair of points occurs in λ blocks.
We denote this by BIBD(v, b, r, k, λ). By a simple counting argument, vr = bk
and λ(v − 1) = r(k − 1). A BIBD is resolvable if B can be partitioned into
r parallel classes, and each class contains v

k disjoint blocks. We denote this
by RBIBD(v, b, r, k, λ). Brickell [18] and Atici, Magliveras, Stinson, and Wei
[10] proved that if there is an RBIBD(v, b, r, k, λ) and r > λ

(
w
2

)
, there is a

PHF1(r; v, vk , w). For results on the existence and asymptotics of RBIBDs,
see [25].

5 Asymptotic Bounds and Algorithms

The probabilistic method yields bounds on PHFNλ. A basic bound is obtained
as follows. Let A be a random N×k array on v symbols; by this, each entry is
selected uniformly at random and independent of all other entries. Choose t
distinct column indices C = {c1, · · · , ct}. The probability that C is separated
in a single row A is the probability that in this row, all columns of C contain

Perfect Hash Families 15

distinct entries. This probability is φt,v =
(vt)t!
vt , and the probability that C

is not separated in this row is 1 − φt,v. Often we write φ and 1 − φ when t
and v are fixed in this context.

Because all rows are chosen independently, the number of rows in which C
is not separated is equal to ρ with probability

(
N
ρ

)
(1 − φ)ρφN−ρ. Define the

probability ψλ,N,t,v (or, more simply, ψλ,N) to be
∑λ−1
ρ=0

(
N
ρ

)
(1−φ)ρφN−ρ. By

linearity of expectation, the expected number of t-sets of columns that are
not λ-separated in A is

(
k
t

)
ψλ,N . When this expected number is less than 1,

a PHFλ(N ; k, v, t) surely exists. When λ = 1, ψ1,N = (1− φ)N . Then taking

logarithms of
(
k
t

)
(1 − φt,v)

N < 1, we obtain an easily stated bound, first
established by Mehlhorn:

Theorem 7. [49] PHFN1(k, v, t) ≤
⌈

log (kt)
f(v,t)

⌉
, where f(v, t) = log(vt) −

log(vt − t!
(
v
t

)
).

Stinson, van Trung, and Wei [62] improved this bound with an expurgation
method. We generalize their technique (for λ = 1) using the technique of
post-processing [64] or oversampling [28].

Theorem 8. PHFN1(k, v, t) ≤ minx≥0

(
N :

(
k+x
t

)
(1− φt,v)N < x+ 1

)
.

Proof. Start with an array with k + x columns, and let E be the expected
number of unseparated t-sets of columns in this array if each entry is chosen
uniformly and independently. If E < x+1, then by deleting one column from
each of the (at most) x unseparated t-sets, we must have a PHF1(N ; k, v, t).

Then
(
k+x
t

)
(1− p)N < x + 1; find the minimum value of N such that there

exists an x ≥ 0 for which this inequality holds.

In a related context [28], the choice x = k
t−1 was shown to be the best; the

same value works for PHF1s as well. Of course, this method extends in the
natural way to higher values of λ.

Stein [60], Lovász [46], and Johnson [42] devise a greedy strategy for explic-
itly producing solutions to certain covering problems of the size guaranteed
by the basic probabilistic method. Their method encompasses t-restrictions.
In the context of perfect hash families with λ = 1, the method constructs
the family one row at a time. As long as there remains at least one t-set to
separate, the method chooses a next row to maximize the number of t-sets
separated for the first time by this row. Let Ui denote the set of t-sets of
columns that are not yet separated after i rows have been selected. If row
i+ 1 is selected at random, linearity of expectations determines that the ex-
pected size of Ui+1 is (1− φ)|Ui|. Hence the greedy selection guarantees that
|Ui+1| ≤ b(1−φ)|Ui|c. Our goal is to find the smallest N such that |UN | < 1;
this ensures that we have found an array with N rows that separates all
t-sets. Because |U0| =

(
k
t

)
, we have |UN | ≤

(
k
t

)
(1 − φ)N . Consequently this

16 R.E. Dougherty and C.J. Colbourn

greedy strategy leads to explicit constructions meeting the bounds of The-
orem 7 and Theorem 8. In fact, it typically yields smaller values of N than
are guaranteed by these results, because (1) expectations can be replaced
by their integer floors, and (2) the greedy strategy may choose a row that
separates many more t-sets than the expectation.

Unfortunately, even when t and v are fixed, a naive implementation of
this greedy strategy is not efficient, because it asks for the examination of
vk rows in order to select a maximum. No efficient algorithm is known for
computing a row that separates the maximum number of t-sets among a given
set U of t-sets. One could, however, be content with a row that separates at
least the expected number rather than the maximum, without affecting the
analysis. A randomized approach to select row i + 1 could first calculate
φ|Ui|, the expected number separated, and generate random rows until one
separates at least this expected number from Ui. Such a method guarantees
to produce a solution meeting the bound on N , but does not guarantee to
run in polynomial time.

Using conditional expectations to derandomize this approach, Colbourn
[22] devised the density method, a deterministic method for constructing
perfect hash families that is efficient when t and v are fixed. We wish to
produce the row i+ 1 efficiently to separate at least φ|Ui| t-sets from Ui. The
key idea is to consider partial rows, in which some entries have been fixed to
one of the v values, and some are free to take on any value. For such a partial
row, one can efficiently calculate the expected number of t-sets in Ui that are
separated when the free entries are chosen uniformly at random. Then, as
long as free entries remain, we can choose one and tentatively fix it to each
of the v possible values, computing the expectation for each. Then we fix the
free entry permanently to a value that leads to a largest expectation. At each
stage, the expected number of t-sets of Ui separated by this (partial) row
cannot decrease. Hence, once all entries are fixed, a row has been efficiently
found that separates at least the expected number for a random row.

In practice, the density method often completes with a number of rows
that is significantly smaller than guaranteed by Theorem 7 (see [22]). We
expect that improvements in a similar method for covering arrays [54,55] can
be applied to hash families as well.

Unfortunately, the extension of these algorithmic methods to cases with
λ > 1 is not immediate. One row cannot, by itself, λ-separate a t-set. Hence
rather than simply tracking t-sets that are 0-separated, progress towards
constructing a perfect hash family of index λ > 1 is measured by the number
of `-separated t-sets for each 0 ≤ ` < λ. Nevertheless, we outline one method
to follow the Stein-Lovász-Johnson paradigm. Suppose that i rows have been
selected, and that the t-sets that are not yet separated at least λ times are
in one of Ui,0, . . . ,Ui,λ−1 where Ui,` contains all t-sets that are `-separated in
the first i rows. Extending the earlier analysis, when t, v, and λ are fixed,
one can efficiently calculate the expected number ψ((Ui,0, . . . ,Ui,λ−1), N − i)
of t-sets that are not separated at least λ times if N − i further rows are

Perfect Hash Families 17

selected uniformly at random. Then one (greedily) chooses row i+ 1 so that

ψ((Ui+1,0, . . . ,Ui+1,λ−1), N − i− 1) ≤ ψ((Ui,0, . . . ,Ui,λ−1), N − i).

Set U0,0 to contain all
(
k
t

)
t-sets, and U0,` = ∅ for 1 ≤ ` < λ. Choose N so

that ψ((U0,0, . . . ,U0,λ−1), N) < 1. The key difference when λ > 1 is that one
presupposes the determination of N , the target number of rows, a step that
is not needed when λ = 1.

The bound of Theorem 7 can be improved in a different manner using
the Lovász local lemma, a tool extensively used in combinatorics [7, 37]. We
employ the symmetric version here:

Theorem 9. Let E1, · · · , En be events in a probability space, Ei is mutually
dependent of at most d other events for all i, and Pr[Ei] ≤ p for all i. If
ep(d + 1) ≤ 1, then with nonzero probability all of the events simultaneously
do not occur.

In the setting of PHF1s, an event Ei are that the ith t-set of columns
is not separated, so that Pr[Ei] = (1− p)N . Events Ei and Ej are mutually
dependent if and only if the corresponding t-sets have nonempty intersection,

so d =
(
k
t

)
−
(
k−t
t

)
− 1. When e (1− p)N

((
k
t

)
−
(
k−t
t

))
≤ 1, there is a PHF1

with those parameters:

Theorem 10. [33] PHFN1(k, v, t) ≤
⌈

log((kt)−(k−tt))+1

f(v,t)

⌉
.

The same argument shows that when eψλ,N,t,v

((
k
t

)
−
(
k−t
t

))
≤ 1, there is

a PHFλ(N ; k, v, t).
An improvement for many parameter sets was found by Procacci and San-

chis [53] using the algorithmic cluster expansion local lemma [56].
In landmark work, Moser and Tardos [50] develop a constructive method

for objects whose sizes match the bound provided by the LLL, and their
techniques have been shown to extend to the cluster expansion local lemma
in [8, 52]. The method is randomized and runs in expected polynomial time
when the number of rows is as dictated by the (original or cluster expansion)
LLL bound. In the context of hash families, one first computes the value of
N that the LLL bound asserts is sufficient, and generates a random N × k
array on v symbols. Now order the

(
k
t

)
t-sets of columns arbitrarily, and fix

this ordering throughout. To check the array, consider each t-set in order
until one is not λ-separated or all are checked. If all are checked, the current
array is the desired PHFλ. Otherwise, for the first t-set of columns that fails,
randomly resample the entries in each row in each column of the t-set, and
start checking again from the first t-set. Remarkably, this column resampling
method terminates with a solution in expected polynomial time when t is
fixed [8, 50,52].

18 R.E. Dougherty and C.J. Colbourn

Because the value for N used is an upper bound, but typically not the
exact value, one can apply the same column resampling approach for smaller
values of N . When N is smaller, there is no guarantee of expected polynomial
running time, and indeed no guarantee that the method will terminate at
all. (This is discussed in a different context in [21].) Nevertheless, column
resampling provides a practical algorithm for producing perfect hash families
that are substantially smaller than the bounds. Of course, when resampling
an N × t subarray, the number of t-sets that are separated fewer than λ
times may increase. Moreover, the likelihood of this occurring increases as
N decreases, as one would expect. Therefore one finds that when N is well
below the bound, most column resamplings make the situation worse. To
avoid wholesale changes in the array resulting in a significant increase in the
number of unseparated t-sets, one could replace a single column within an
unseparated t-set rather than all t. In general, one could consider partial
resamplings of the type in [41].

Starting with a PHFλ(N ; k, v, t) and adding a randomly chosen column,
one can choose always to replace the new column when there is an unsepa-
rated t-set. This random extension method [28] amounts to choosing possible
random columns to adjoin until one is found that λ-separates all

(
k
t−1
)
t-sets

of columns containing the new one. In practical computations, often many
additional columns can be adjoined. We do not report computational results
for the methods discussed, instead referring the reader to [35].

Density-based and column resampling algorithms are conceptually simple,
and while they can be useful for making perfect hash families with moder-
ately large parameters, one should not expect either to produce optimal PHFs
in general; indeed, the optimal linear perfect hash families have dramatically
fewer rows than are guaranteed by the probabilistic methods. Unfortunately,
known direct constructions address quite limited parameter sets. Neverthe-
less, we have seen that recursive constructions rely on finding suitable ingre-
dients with small values of the parameters. For this reason, it is natural to
consider metaheuristics that identify a set of changes allowed and a rule for
determining when one applies the change to the array, and when one rejects
the change and keeps the current array. Evidently the long-term objective
of any such method is to reduce the number of t-sets that are unseparated,
eventually to 0.

Arguably, the Moser-Tardos algorithm is such a method, in which the
possible changes are the resamplings of all entries of an unseparated t-set
of columns, whose rule accepts every change. Applying the method of [41]
would choose from a smaller set of possible changes but still accept all. One
might prefer changes that reduce, or at least do not increase, the number of
unseparated t-sets. Local optimization or hill-climbing accepts changes only
when the change does not increase the number of t-sets. As one might expect,
it can happen that none of the offered changes are accepted, and the method
is stuck at a local optimum with no escape. For this reason, more sophisti-
cated metaheuristic methods (simulated annealing [43], tabu search [40], the

Perfect Hash Families 19

great deluge algorithm [36], constraint or answer-set programming [45], for
example) can be applied. In general, these methods require either that the
separation status of each t-set be stored or frequently recalculated; whichever
is done, one small change can affect the status of many t-sets. As a result
these methods are (at least at present) limited to ‘small’ values of the pa-
rameters. Many such perfect hash families that are the smallest known have
been found using metaheuristic methods [35], although none guarantees an
improvement on column resampling or the density-based methods in general.

A different strategy, post-optimization, starts with a PHFλ(N ; k, v, t).
Through a series of changes alterations of individual entries without making
any t-set unseparated, the method attempts to make an entire row contain
only ? entries. When this can be done, the row can be deleted to form a
PHFλ(N − 1; k, v, t); again, some computational results are reported in [35].
This strategy is discussed for general t-restrictions in [31].

6 Concluding Remarks

In this selective survey of combinatorial aspects of perfect hash families, we
have found that many methods generalize in a natural manner to treat exis-
tence for fixed λ > 1. Perfect hash families are central in the construction of a
wide variety of other combinatorial objects, particularly because of Construc-
tion 1. The extension of existence results for λ = 1 to higher λ can therefore
provide a valuable tool in the construction of arrays for a variety of practi-
cal applications. An example arises in the construction of locating arrays (a
type of t-restriction) with separation greater than 1 [57]; in that context, the
increase in separation entails a substantial increase in the number of rows,
and hence also in computation time. We argue that a viable alternative is to
instead construct a perfect hash family with index λ > 1, and employ column
replacement to address the t-restriction. We anticipate that this framework
can prove useful in similar applications in which the effects of a single row
are prone to error or mismeasurement.

In addition to ensuring that every t-set of columns be separated at least
λ times, one might address the more stringent requirement that every t-set
be separated at least λ and at most λ times. When λ = λ, such a PHF is
perfectly balanced [3]. Alon and Gutner [3] establish that a perfectly balanced
PHFλ(N ; k, v, t) can exist only when N = Ω(kbt/2c) for t fixed. Contrast
this with the Θ(log k) growth rate for PHF1s to understand why perfectly
balanced PHFs are not frequently used. On the other hand, a PHF(N ; k, v, t)
is δ-balanced for some δ ≥ 1 if there is a value T > 0 so that every t-set of
columns is separated at least T

δ and at most δT times [4]. Alon and Gutner [4]
show that for any fixed δ > 1, there is a δ-balanced PHF(N ; k, v, t) with N
close to 2O(t log log t) log k; so, for fixed t, the growth rate is the same as for
PHF1s. Their approach relies (in small part) on the binomial distribution

20 R.E. Dougherty and C.J. Colbourn

of the number of times a t-set is separated and the application of Chernoff
bounds. Moreover, their techniques yield an explicit construction method in
principle; its practical effectiveness for intermediate values of k has not been
explored.

When δ-balanced PHFs are used in Construction 1 with different t-
restrictions, the array constructed inherits from the balanced PHF a lower
bound on the number of rows in which the t-restriction is met. However, the
t-restriction may be met in a row arising from a row of the PHF despite failure
of the PHF to separate in this row; hence balanced PHFs need not result in
balanced t-restrictions through Construction 1. For these reasons, it is rea-
sonable to focus on extending known methods, and finding new methods, for
constructing perfect hash families of index λ > 1.

Acknowledgments

This work is supported in part by the U.S. National Science Foundation
grants #1421058 and #1813729. Thanks to Randy Compton, Stephanie For-
rest, Erin Lanus, Kaushik Sarkar, and Violet Syrotiuk for helpful discussions.

References

1. Akhtar, Y., Phoa, F.K.H.: A construction of cost-efficient designs with guaranteed
repeated measurements on interaction effects. preprint (2019)

2. Alon, N.: Explicit construction of exponential sized families of k-independent sets.
Discrete Mathematics 58(2), 191–193 (1986)

3. Alon, N., Gutner, S.: Balanced hashing, color coding and approximate counting. In:
Parameterized and Exact Computation, 4th International Workshop, IWPEC 2009,

Copenhagen, Denmark, pp. 1–16 (2009)
4. Alon, N., Gutner, S.: Balanced families of perfect hash functions and their applications.

ACM Trans. Algorithms 6(3), 54:1–54:12 (2010)
5. Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for k-restrictions.

ACM Trans. Algorithms 2, 153–177 (2006)
6. Alon, N., Naor, M.: Derandomization, witnesses for Boolean matrix multiplication and

construction of perfect hash functions. Algorithmica 16(4-5), 434–449 (1996)
7. Alon, N., Spencer, J.H.: The probabilistic method. John Wiley & Sons (2004)
8. Alves, R.G., Procacci, A.: Witness trees in the Moser-Tardos algorithmic Lovász local

lemma and Penrose trees in the hard-core lattice gas. Journal of Statistical Physics

156(5), 877–895 (2014)
9. Atici, M.: Hash families: recursive constructions and applications to cryptography.

PhD dissertation, University of Nebraska (1996)
10. Atici, M., Magliveras, S.S., Stinson, D.R., Wei, W.D.: Some recursive constructions

for perfect hash families. Journal of Combinatorial Designs 4(5), 353–363 (1996)
11. Barwick, S.G., Jackson, W.A.: A sequence approach to linear perfect hash families.

Designs, Codes and Cryptography 45(1), 95–121 (2007)
12. Barwick, S.G., Jackson, W.A.: Geometric constructions of optimal linear perfect hash

families. Finite Fields and Their Applications 14(1), 1–13 (2008)

Perfect Hash Families 21

13. Blackburn, S.R.: Perfect hash families with few functions. Unpublished manuscript
14. Blackburn, S.R.: Perfect hash families: Probabilistic methods and explicit construc-

tions. Journal of Combinatorial Theory, Series A 92(1), 54–60 (2000)
15. Blackburn, S.R.: Frameproof codes. SIAM Journal on Discrete Mathematics 16(3),

499–510 (2003)
16. Blackburn, S.R., Burmester, M., Desmedt, Y., Wild, P.R.: Efficient multiplicative shar-

ing schemes. In: Advances in Cryptology - EUROCRYPT ’96, International Conference
on the Theory and Application of Cryptographic Techniques, pp. 107–118 (1996)

17. Blackburn, S.R., Wild, P.R.: Optimal linear perfect hash families. Journal of Combi-

natorial Theory, Series A 83(2), 233–250 (1998)
18. Brickell, E.F.: A problem in broadcast encryption. In: 5th Vermont Summer Workshop

on Combinatorics and Graph Theory (1991)
19. Brouwer, A.E., Etzion, T.: Bounds for binary constant weight codes. IEEE Transac-

tions on Information Theory 36, 1334–1380 (1990)
20. Cassels, J., Godbole, A.: Covering arrays for equivalence classes of words. Journal of

Combinatorial Designs to appear (2019)
21. Catarata, J.D., Corbett, S., Stern, H., Szegedy, M., Vyskocil, T., Zhang, Z.: The

Moser-Tardos resample algorithm: Where is the limit? (an experimental inquiry). In:

Proceedings of the Ninteenth Workshop on Algorithm Engineering and Experiments
ALENEX, pp. 159–171 (2017)

22. Colbourn, C.J.: Constructing perfect hash families using a greedy algorithm. Coding
and Cryptology pp. 109–118 (2008)

23. Colbourn, C.J.: Distributing hash families and covering arrays. Journal of Combina-

torics, Information, and System Sciences 34, 113–126 (2009)
24. Colbourn, C.J.: Covering arrays and hash families. NATO Science for Peace and

Security Series, D: Information and Communication Security 29(Information Security,

Coding Theory and Related Combinatorics), 99–135 (2011)
25. Colbourn, C.J., Dinitz, J.H.: Handbook of Combinatorial Designs. CRC Press (2007)
26. Colbourn, C.J., Dougherty, R.E., Horsley, D.: Distributing hash families with few rows.

Theoretical Computer Science (2018). (Accepted)
27. Colbourn, C.J., Horsley, D., Syrotiuk, V.R.: Strengthening hash families and compres-

sive sensing. Journal of Discrete Algorithms 16, 170–186 (2012)
28. Colbourn, C.J., Lanus, E., Sarkar, K.: Asymptotic and constructive methods for cov-

ering perfect hash families and covering arrays. Designs, Codes and Cryptography pp.

1–31 (2017)
29. Colbourn, C.J., Ling, A.C.H.: Linear hash families and forbidden configurations. De-

signs, Codes and Cryptography 52(1), 25–55 (2009)
30. Colbourn, C.J., Ling, A.C.H.: A recursive construction for perfect hash families. Jour-

nal of Mathematical Cryptology 3(4), 291–306 (2009)
31. Colbourn, C.J., Nayeri, P.: Randomized post-optimization for t-restrictions. In: Infor-

mation theory, combinatorics, and search theory, Lecture Notes in Computer Science,
vol. 7777, pp. 597–608. Springer, Heidelberg (2013)

32. Czech, Z.J., Havas, G., Majewski, B.S.: Perfect hashing. Theoretical Computer Science

182, 1–143 (1997)
33. Deng, D., Stinson, D.R., Wei, R.: The Lovász local lemma and its applications to some

combinatorial arrays. Designs, Codes and Cryptography 32(1-3), 121–134 (2004)
34. Dinitz, J.H., Ling, A.C.H., Stinson, D.R.: Perfect hash families from transversal de-

signs. The Australasian Journal of Combinatorics 37, 233–242 (2007)
35. Dougherty, R.E.: Perfect hash family tables for t=3 to 11 (2017). URL

http://www.public.asu.edu/∼redoughe/phf pages/phf tables.html
36. Dueck, G.: New optimization heuristics: The great deluge algorithm and the record-

to-record travel. Journal of Computational Physics 104(1), 86–92 (1993)
37. Erdős, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some

related questions. In: Infinite and finite sets, pp. 609–627. North-Holland, Amsterdam

(1975)

22 R.E. Dougherty and C.J. Colbourn

38. Fiat, A., Naor, M.: Broadcast encryption. In: Proceedings of the 13th Annual Interna-

tional Cryptology Conference on Advances in Cryptology, CRYPTO ’93, pp. 480–491
(1994)

39. Fuji-Hara, R.: Perfect hash families of strength three with three rows from varieties

on finite projective geometries. Designs, Codes and Cryptography 77(2-3), 351–356
(2015)

40. Glover, F., Laguna, M.: Tabu search. In: Handbook of combinatorial optimization,

Vol. 3, pp. 621–757. Kluwer Acad. Publ., Boston, MA (1998)
41. Harris, D.G., Srinivasan, A.: The Moser-Tardos framework with partial resampling.

In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science—FOCS
2013, pp. 469–478. IEEE Computer Soc., Los Alamitos, CA (2013)

42. Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of Com-

puter and System Sciences 9, 256–278 (1974)
43. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Sci-

ence 220(4598), 671–680 (1983)

44. Knill, E., Bruno, W.J., Torney, D.C.: Non-adaptive group testing in the presence of
errors. Discrete Applied Mathematics 88(1), 261–290 (1998)

45. Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence

138(1), 39–54 (2002)
46. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math.

13(4), 383–390 (1975)

47. MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. North-
Holland Publishing Co., Amsterdam-New York-Oxford (1977)

48. Martirosyan, S., Tran Van Trung: Explicit constructions for perfect hash families.
Designs, Codes and Cryptography 46(1), 97–112 (2008)

49. Mehlhorn, K.: On the program size of perfect and universal hash functions. In: 23rd

Annual Symposium on Foundations of Computer Science (sfcs 1982), pp. 170–175
(1982)

50. Moser, R.A., Tardos, G.: A constructive proof of the general Lovász local lemma.

Journal of the ACM (JACM) 57(2), 11 (2010)
51. Newman, I., Wigderson, A.: Lower bounds on formula size of Boolean functions using

hypergraph entropy. SIAM Journal on Discrete Mathematics 8(4), 536–542 (1995)

52. Pegden, W.: An extension of the Moser-Tardos algorithmic local lemma. SIAM Journal
on Discrete Mathematics 28(2), 911–917 (2014)

53. Procacci, A., Sanchis, R.: Perfect and separating hash families: new bounds via the

algorithmic cluster expansion local lemma. Annales de l’Institut Henri Poincaré D.
Combinatorics, Physics and their Interactions 5(2), 153–171 (2018)

54. Sarkar, K., Colbourn, C.J.: Upper bounds on the size of covering arrays. SIAM Journal
on Discrete Mathematics 31(2), 1277–1293 (2017)

55. Sarkar, K., Colbourn, C.J.: Two-stage algorithms for covering array construction. Jour-

nal of Combinatorial Designs to appear (2019)
56. Scott, A.D., Sokal, A.D.: The repulsive lattice gas, the independent-set polynomial,

and the Lovász local lemma. J. Stat. Phys. 118(5-6), 1151–1261 (2005)

57. Seidel, S.A., Sarkar, K., Colbourn, C.J., Syrotiuk, V.R.: Separating interaction effects
using locating and detecting arrays. In: International Workshop on Combinatorial

Algorithms, pp. 349–360 (2018)
58. Shangguan, C., Ge, G.: Separating hash families: A Johnson-type bound and new

constructions. SIAM Journal on Discrete Mathematics 30(4), 2243–2264 (2016)

59. Staddon, J.N., Stinson, D.R., Wei, R.: Combinatorial properties of frameproof and

traceability codes. IEEE Transactions on Information Theory 47, 1042–1049 (2001)
60. Stein, S.K.: Two combinatorial covering theorems. Journal of Combinatorial Theory.

Series A 16, 391–397 (1974)
61. Stinson, D.R.: On some methods for unconditionally secure key distribution and broad-

cast encryption. Designs, Codes and Cryptography 12(3), 215–243 (1997)

Perfect Hash Families 23

62. Stinson, D.R., Tran Van Trung, Wei, R.: Secure frameproof codes, key distribution pat-

terns, group testing algorithms and related structures. Journal of Statistical Planning
and Inference 86(2), 595–617 (2000)

63. Stinson, D.R., Wei, R., Zhu, L.: New constructions for perfect hash families and related

structures using combinatorial designs and codes. Journal of Combinatorial Designs
8(3), 189–200 (2000)

64. Van Den Berg, E., Candès, E., Chinn, G., Levin, C., Olcott, P.D., Sing-Long, C.:

Single-photon sampling architecture for solid-state imaging sensors. Proceedings of
the National Academy of Sciences 110(30), E2752–E2761 (2013)

65. Walker II, R.A., Colbourn, C.J.: Perfect hash families: Constructions and existence.
Journal of Mathematical Cryptology 1(2) (2007)

