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Abstract
In a digraph with a source and several destination nodes with associated demands, an
unsplittable flow routes each demand along a single path from the common source
to its destination. Given some flow x that is not necessarily unsplittable but satisfies
all demands, it is a natural question to ask for an unsplittable flow y that does not
deviate from x by too much, i.e., ya ≈ xa for all arcs a. Twenty years ago, in a
landmark paper, Dinitz et al. (Combinatorica 19:17–41, 1999) proved that there exists
an unsplittable flow y such that ya ≤ xa + dmax for all arcs a, where dmax denotes
the maximum demand value. Our first contribution is a considerably simpler one-page
proof for this classical result, based upon an entirely new approach. Secondly, using a
subtle variant of this approach, we obtain a new result: There is an unsplittable flow y
such that ya ≥ xa − dmax for all arcs a. Finally, building upon an iterative rounding
technique previously introduced by Kolliopoulos and Stein (SIAM J Comput 31:919–
946, 2002) and Skutella (Math Program 91:493–514, 2002), we prove existence of
an unsplittable flow that simultaneously satisfies the upper and lower bounds for the
special case when demands are integer multiples of each other. For arbitrary demand
values, we prove the weaker simultaneous bounds xa/2 − dmax ≤ ya ≤ 2xa + dmax
for all arcs a.
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1 Introduction

Ever since the seminal work of Ford and Fulkerson [6] network flows belong to the
most important and fundamental class of problems in combinatorial optimization and
mathematical programming.We refer to the classical textbook [1] byAhuja,Magnanti,
and Orlin as well as the very recent new textbook [17] by Williamson on the topic.

1.1 Problem setting and notation

Let D = (V , A) be a directed acyclic graphwith source node s ∈ V and k commodities
with destination nodes t1, . . . , tk ∈ V and associated demands d1, . . . , dk ∈ R>0. A
flow x ∈ R

A≥0 satisfies the given demands if it simultaneously sends di units of flow
from s to ti , for all i = 1, . . . , k. That is, x must satisfy the following flow conservation
constraints:

x(δin(v)) − x(δout(v)) =

⎧
⎪⎨

⎪⎩

di if v = ti for some i ∈ {1, . . . , k},
−∑k

i=1 di if v = s,

0 otherwise.

(1)

Here, δin(v) and δout(v) denote the set of incoming and outgoing arcs of node v,
respectively; for B ⊆ A, let x(B) := ∑

a∈B xa . In the following, whenever we refer
to a flow, we mean a flow satisfying the given demands, i.e., Constraints (1), unless
stated otherwise.

The following classical integrality property of network flows (see, e.g., [1, The-
orem 9.10]) follows, for example, from the fact that the node-arc incidence matrix,
which implicitly occurs on the left-hand side of (1), is totally unimodular.

Theorem 1 If the demands d1, . . . , dk are all integral, then any flow x can be written
as a convex combination of integral flows such that each such integral flow y ∈ Z

A≥0
satisfies

�xa� ≤ ya ≤ 	xa
 for all a ∈ A.

In particular, there exists an integral flow y obeying these upper and lower bounds.

1.2 Single source unsplittable flows

In 1996, Kleinberg [7] introduced single source unsplittable flows. A flow is called
unsplittable if the entire demand of each commodity is routed along one path from
the source to its destination node. That is, an unsplittable flow y can be specified as
follows: for all i = 1, . . . , k, there is one s-ti -path Py

i in D such that

ya =
∑

i :a∈Py
i

di for all a ∈ A.
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Single source unsplittable flows with arc-wise lower and upper bounds 479

In order to emphasize the fact that a particular flow x is not necessarily unsplittable,
we sometimes refer to x as a fractional flow in this case. For the special case of unit
demands, a flow is unsplittable if and only if it is integral.

1.3 Related literature

Single source unsplittable flows constitute a special case of more general unsplit-
table flows where each commodity has its own source and destination node. General
unsplittable flows have been well studied in the literature as an interesting extension
of disjoint paths. For instance, if we are given arc capacities and demands for each
commodity and look for an unsplittable flow ofminimum congestion, i.e., of minimum
overload of arc capacities, Raghavan and Thompson [13,14] present an approximation
algorithm based on their randomized rounding technique. We refer to the survey [10]
by Kolliopoulos for an overview of results on general unsplittable flows.

The problem of finding a single source unsplittable flow in a directed graph with
capacities on the arcs contains several well-known NP-complete problems as special
cases, e.g., Partition,Bin Packing, or even scheduling parallelmachineswithmakespan
objective; we refer to Kleinberg’s PhD thesis [7] for more details and other special
cases.

Kleinberg [7], Dinitz et al. [4], Kolliopoulos and Stein [11], and Skutella [16]
present approximation algorithms for various optimization versions of the single
source unsplittable flow problem. Du and Kolliopoulos [5] have implemented and
empirically tested several of those approximation algorithms.

Baier et al. [2] introduce the following interesting relaxation of unsplittable flows.
For a given k ≥ 1, a k-splittable flowmust route each commodity along atmost k paths.
In particular, 1-splittable flows are unsplittable flows. It follows from the classical flow
decomposition theorem that k-splittability is not a meaningful restriction for k ≥ |A|.
Single source k-splittable flows are studied, e.g., by Kolliopoulos [9], Koch, Skutella,
and Spenke [8], as well as Salazar and Skutella [15].

The central result in the seminal paper of Dinitz et al. [4] is the following theorem
on single source unsplittable flows, where the maximum demand value is denoted
by dmax := max{d1, . . . , dk}.
Theorem 2 For a given flow x, there exists an unsplittable flow y such that

ya ≤ xa + dmax for all a ∈ A. (2)

The proof of this theorem given in [4] is in fact algorithmic, that is, the authors
provide an efficient algorithm that turns the given flow x into an unsplittable flow y
satisfying the arc-wise upper bounds (2). We give a rather short and intuitive sketch
of their procedure.

Starting from the fractional flow x , the algorithm aims to iteratively move destina-
tion nodes towards the source node s by repeatedly augmenting flow along residual
cycles featuring a special property. Intuitively, in order to find such a cycle, one starts
at an arbitrary node in the graph and moves forward along arcs whenever possible,
and only moves backward (i.e., in the opposite direction of arcs) if a destination node
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480 S. Morell, M. Skutella

without outgoing arcs is reached. As soon as a cycle occurs, flow is decreased along
the forward arcs of the cycle and increased along the backward arcs until one can either
remove a forward arc with no more flow on it or move a destination node ti towards s
along an incoming (backward) arc with flow value at least di . This process is iterated
until all destination nodes reach the source node s. The resulting unsplittable flow y
sends each commodity i along the s-ti -path through which its destination node ti has
moved towards the sink (in opposite direction).

The proof implies the following strengthening of Theorem 2 which can also be
found in [4].

Corollary 1 For a given flow x, there is an unsplittable flow y such that, for every
arc a ∈ A, the sum of all but one of the demands routed along a is at most xa.

1.4 Contribution and outline

In Sect. 2 we present a considerably simpler one-page proof of Theorem 2 and Corol-
lary 1, based upon an entirely new approach. Dinitz, Garg, and Goemans start with the
fractional flow y := x and then iteratively modify y, always maintaining Property (2),
until y is unsplittable. In contrast, we start with an arbitrary unsplittable flow y vio-
lating Property (2) and then iteratively modify y, always maintaining an unsplittable
flow, until y meets Property (2).

In Sect. 3, using a similar approach, we derive the following new covering analogue
of the packing result in Theorem 2:

Theorem 3 For a given flow x, there exists an unsplittable flow y such that

ya ≥ xa − dmax for all a ∈ A. (3)

To prove this result, we again iteratively turn an arbitrary unsplittable flow into
one that meets Property (3). In contrast to the packing result, however, the proof of
the covering bounds in (3) turns out to be somewhat more intricate, requiring several
additional insights and arguments.

Similar in spirit to Corollary 1, our proof implies the following strengthening of
Theorem 3.

Corollary 2 For a given flow x, there exists an unsplittable flow y such that ya ≥
x̃a −maxi di for all a ∈ A, where the maximum is only taken over those commodities i
with arc a lying on some s-ti -path.

Section 4 considers upper bounds (2) and lower bounds (3) simultaneously. Using
techniques introduced by Kolliopoulos and Stein [11], Skutella [16], and Martens et
al. [12], we obtain the following generalization of Theorem 1:

Theorem 4 If the demand values are integer multiples of each other, i.e., dk | dk−1 |
. . . | d1, then any flow x can be written as a convex combination of unsplittable flows
such that each such unsplittable flow y satisfies

xa − dmax ≤ ya ≤ xa + dmax for all a ∈ A. (4)
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Single source unsplittable flows with arc-wise lower and upper bounds 481

In particular, for arbitrary cost c = (ca)a∈A on the arcs, there exists an unsplittable
flow y obeying Property (4) such that c(y) ≤ c(x).

Finally, for arbitrary demand values, we obtain the following slightly weaker
bounds:

Theorem 5 For a given flow x, there exists an unsplittable flow y such that

xa
2

− dmax ≤ ya ≤ 2 xa + dmax for all a ∈ A. (5)

We conclude in Sect. 5 by pointing out several interesting open problems and stating
a stronger version of Goemans’ unsplittable flow conjecture.

1.5 Preliminaries

We assume throughout this paper that, without loss of generality, each node v ∈ V
lies on an s-ti -path for some i ∈ {1, . . . , k}. Paths are considered to be subsets of
the given arc set A. For a path Q and two nodes v,w ∈ V lying on path Q (with v

being visited first), the v-w-subpath of Q is denoted by Q|[v,w]. Finally, for a subset
of nodes X ⊆ V \{s}, let d(X) := ∑

i :ti∈X di denote the total demand of sinks in X .

2 A short proof of the Dinitz–Garg–Goemans Theorem

Our novel proof of Theorem2 relies on a simple augmentation step, called upper bound
preserving (UBP) augmentation step. For a given flow x and an arbitrary unsplittable
flow y, we say that a node v is UBP-reachable w.r.t. y if there exists an s-v-path Q
such that

ya ≤ xa for all a ∈ Q.

A UBP augmentation step for an unsplittable flow y is defined as follows: Given a
node v that is UBP-reachable w.r.t. y along path Q and a commodity i such that node v

lies on path Py
i , reroute commodity i from s to v along path Q. This results in a new

unsplittable flow y′ using a new s-ti -path Py′
i with Py′

i |[s,v] = Q; see Fig. 1 for an
illustration. Notice that

y′
a ≤ xa + di for all a ∈ Py′

i |[s,v],

which explains why the augmentation step is called upper bound preserving.
If an unsplittable flow y′ results from y by a finite sequence of UBP augmentation

steps, we write y
UBP� y′. We say that a node v is eventually UBP-reachable (eUBP-

reachable) w.r.t. y if there exists an unsplittable flow y′ with y
UBP� y′ such that v is

UBP-reachable w.r.t. y′.
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482 S. Morell, M. Skutella

Fig. 1 For a given unsplittable flow y, let v be UBP-reachable w.r.t. y along a path Q (illustrated dashed
on the left) and let i be a commodity such that v lies on path Py

i . A UBP augmentation step reroutes
commodity i from s to v along path Q. The resulting unsplittable flow y′ is illustrated on the right

Lemma 1 For any unsplittable flow y, all nodes in V are eUBP-reachable w.r.t. y.

Proof Assume by contradiction that there exists an unsplittable flow y such that the
set Xy of eUBP-reachable nodesw.r.t. y is a proper subset of V , i.e., Xy � V . Applying
UBP augmentation steps to y cannot enlarge the set of eUBP-reachable nodes. Hence,
if we choose y such that Xy is inclusion-wise minimal, then Xy = Xy′ =: X for any

unsplittable flow y′ with y
UBP� y′. We prove three important properties of y and X :

(P1) ya > xa for all a ∈ δout(X).
Indeed, if there is an arc a = (v,w) ∈ δout(X) with ya ≤ xa , let y′ be an
unsplittable flow resulting from y by a shortest possible sequence of UBP aug-
mentation steps such that v is UBP-reachable w.r.t. y′. As long as node v is not
UBP-reachable, flow on arc a cannot increase during a UBP augmentation step.
Hence, y′

a ≤ ya ≤ xa which implies that not only v but alsow is UBP-reachable
w.r.t. y′. Hence, w ∈ X , a contradiction.

(P2) y(δin(X)) = ∑
a∈δin(X) ya > 0.

By assumption, there is a path from source s ∈ X to any node in V \X .
Hence, δout(X) �= ∅. Both flows x and y satisfy the same set of demands.
In particular, y(δout(X)) − y(δin(X)) = d(V \X) = x(δout(X)) − x(δin(X)).
But, by Property (P1), y(δout(X)) > x(δout(X)). Therefore, y(δin(X)) > 0.

(P3) y′(δin(X)) ≤ y(δin(X)) for each unsplittable flow y′ with y
UBP� y′.

It is sufficient to consider the case that y′ is obtained from y by one UBP
augmentation step, which reroutes commodity i from source s to some node v ∈
X along an s-v-path Q. By definition of X , path Q must remain within X .
Moreover, Py

i |[s,v] may either remain within X , implying that the total in-flow
of y does not change; or it may exit and re-enter X , implying that y(δin(X))

decreases by (a multiple of) demand di .

Since there are only finitely many different unsplittable flows and in view of Prop-
erty (P3), we choose y with y(δin(X)) minimal. By Property (P2), there exists an
arc a = (w, v) ∈ δin(X) such that ya > 0. Since v ∈ X , there is an unsplittable
flow y′ with y

UBP� y′ such that v is UBP-reachable w.r.t. y′ via an s-v-path Q; see
Fig. 2.

Flow on arc a remains unchanged, i.e., y′
a = ya , and there exists a commodity i

with a ∈ Py′
i . Rerouting commodity i from s to v along Q decreases y′(δin(X)) =

y(δin(X)), contradicting its minimality. 
�
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Fig. 2 Arc a = (w, v) ∈ δin(X) is used by path Py′
i , illustrated solid, for some commodity i . Its demand di

can be rerouted from s to v along an s-v-path Q, illustrated dashed

Fig. 3 An instance with k demands of value 1. Flow x is given as follows: solid arcs have flow value k
k+1

and dashed arcs carry flow value 1
k+1 . Notice that any unsplittable flow sends zero flow on some solid arc

In order to prove Theorem 2, we start with an arbitrary unsplittable flow y0. By
Lemma 1, each of the destination nodes ti , i = 1, . . . , k is eUBP-reachable w.r.t. any
unsplittable flow, i.e., ti is UBP-reachable w.r.t. some unsplittable flow via an s-ti -
path Q. We apply a UBP augmentation step, rerouting demand di along path Q. The
resulting flow yi satisfies the desired arc-wise upper bound on all arcs lying on the
new s-ti -path Pyi

i = Q.
Whenever a commodity i is routed properly, meaning that yi satisfies the arc-wise

upper bound on all arcs, it remains so, independently ofwhichUBP augmentation steps
may follow. Hence, if we apply this procedure successively to each of the destination
nodes ti , i = 1, . . . , k , the commodities 1, . . . , i are properly routed in the resulting
flow yi . Therefore, the final flow yk satisfies the arc-wise upper bound on all arcs. This
concludes the proof of Theorem 2.

Notice that for every arc a ∈ A and for the commodity j being routed along a at last,
the final unsplittable flow y satisfies y(a) − d j ≤ x(a). This implies that Corollary 1
can also be deduced from the previously presented proof of Theorem 2.

3 Unsplittable flows with arc-wise lower bounds

Notice that the lower bound (3) in Theorem 3 is tight in the following sense: For
each ε > 0, there exists a digraph D together with a fractional flow x such that no
unsplittable flow y satisfies ya ≥ xa−dmax+ε, for all a ∈ A; see the instance depicted
in Fig. 3 with k = 	1/ε
.
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Fig. 4 Let the digraph have three commodities with demand 1, as illustrated on the left, and let the fractional
flow x be given as follows: xsolid = 1, xdashed = 1−ε, xdotted = ε, and xred = 3−3ε for some ε > 0. The
algorithm in [4] first creates an alternating cycle including the red arc as a forward arc. Hence, we decrease
flow on the red arc by 1 − ε and move one demand towards source s along its corresponding dotted arc.
The remaining instance with two commodities and x ′

red = 2 − 2ε is illustrated on the right. Any further
step again decreases flow on the red arc by 1 − ε, hence violating the desired lower bound on the red arc

We point out that the techniques provided in [4] are not adaptable for handling
arc-wise lower bounds, as illustrated in Fig. 4. By adding commodities and expanding
the given graph, the violation of lower bounds can be arbitrarily large.

There does not seem to be any analogous alternative operation for lower bounds.
Consequently, even though the two problems regarding arc-wise upper and lower
bounds seem similar in spirit, we need to develop new tools in order to solve the above
mentioned problem.

3.1 A proof for unsplittable flows satisfying arc-wise lower bounds

The proof of Theorem 3 is based on a similar approach as our proof of the Dinitz-
Garg-Goemans Theorem in Sect. 2, yet turns out to be somewhat more intricate. Since
we are no longer interested in upper bounds but in lower bounds, we now use lower
bound preserving (LBP) augmentation steps: for an unsplittable flow y, we say that
node v is LBP-reachable w.r.t. y if there is a commodity i whose s-ti -path Py

i passes
through node v and the s-v-subpath Py

i |[s,v] satisfies

ya ≥ xa for all a ∈ Py
i |[s,v].

To emphasize the role of commodity i , we also say that node v is LBP-reachable for
commodity i w.r.t. y in this case.

An LBP augmentation step for an unsplittable flow y is defined as follows: Given
a node v that is LBP-reachable for commodity i w.r.t. y, reroute commodity i from
source s to node v along an arbitrary s-v-path Q. This results in a new unsplittable

flow y′ using a new s-ti -path Py′
i with Py′

i |[s,v] = Q; see Fig. 5 for an illustration.
Notice that for each a ∈ Py

i |[s,v] we have y′
a ≥ xa − di , which explains why the

augmentation step is called lower bound preserving. If an unsplittable flow y′ results
from y by a finite sequence of LBP augmentation steps, we write y

LBP� y′. We say that
node v is eventually LBP-reachable (eLBP-reachable) for commodity i w.r.t. y if there
is an unsplittable flow y′ with y

LBP� y′ such that v is LBP-reachable (for commodity i)
w.r.t. y′.
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Fig. 5 For a given unsplittable flow y, let v be LBP-reachable for some commodity i w.r.t. y. An LBP
augmentation step reroutes commodity i from s to v along an arbitrary s-v-path Q (illustrated dashed on
the left). The resulting unsplittable flow y′ is illustrated on the right

Proposition 1 Let y be an unsplittable flowand v a node on path P y
i for some commod-

ity i . If v is eLBP-reachable w.r.t. y′ for all y′ with y
LBP� y′, then v is eLBP-reachable

for commodity i w.r.t. y.

Proof Assume by contradiction that v is not eLBP-reachable for commodity i w.r.t. y.
Then any y′ with y

LBP� y′ constitutes another counterexample. In particular, node v is

on path Py′
i and the s-v-subpath Py′

i |[s,v] contains at least one arc a such that y′
a <

xa . Let ay
′ = (uy′

, wy′
) be such arc closest to v. Let γ y′

be the number of arcs

on Py′
i |[wy′ ,v].

Choose counterexample y such that the following two criteria are met in the given
order:

(i) γ y is maximal,
(ii) yay is maximal.

The situation is depicted in Fig. 6.
Consider a sequence of unsplittable flows y = y0, y1, . . . , yq , where each y j results

from y j−1 via an LBP augmentation step, such that there is a node w on Py
i |[wy ,v]

that is LBP-reachable w.r.t. yq but no node on Py
i |[wy ,v] is LBP-reachable w.r.t. y j for

any j < q. Such a sequence exists since node v is eLBP-reachable w.r.t. y. As no node
on Py

i |[wy ,v] is LBP-reachable w.r.t. y j for any j < q, flow on the arcs of Py
i |[uy ,v] is

never decreased during these LBP augmentation steps and Py
i |[uy ,v] = P

yj
i |[uy ,v] for

all j ≤ q. In particular, due to (i) and (ii), γ y j = γ y , ay j = ay , and the flow on arc ay

remains unchanged for all j ≤ q.

Fig. 6 Arc ay = (uy , wy) satisfies yay < xay and is closest to v among all such arcs on path Py
i |[s,v]. This

implies that all arcs a on Py
i |[wy ,v], illustrated solid, carry flow ya ≥ xa . The number of arcs on Py

i |[wy ,v]
is denoted by γ y
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Fig. 7 Node w is LBP-reachable for some commodity j w.r.t. yq ; path P
yq
j is illustrated dashed. The

demand d j can be rerouted along the s-w-subpath of P
yq
i , now illustrated solid

Finally, nodew is LBP-reachable for some commodityw.r.t yq ; see Fig. 7.Rerouting
that commodity along Py

i |[s,w] strictly increases flow on ay , contradicting the choice
of y in terms of (i), (ii). 
�
Lemma 2 For any unsplittable flow y, all nodes in V are eLBP-reachable for some
commodity w.r.t. y.

Proof Assume by contradiction that there exists an unsplittable flow y such that the
set Xy of eLBP-reachable nodes w.r.t. y is a proper subset of V , i.e., Xy � V .
ApplyingLBPaugmentation steps to y cannot enlarge the set of eLBP-reachable nodes.
Hence, if we choose y such that Xy is inclusion-wise minimal, then Xy = Xy′ =: X
for any unsplittable flow y′ with y

LBP� y′. Notice that an LBP augmentation step
cannot decrease the outgoing flow y(δout(X)). Indeed, if a node v ∈ X is LBP-
reachable for some commodity i w.r.t. y, then all nodes on the s-v-subpath Py

i |[s,v]
are LBP-reachable for commodity i w.r.t y. Hence, Py

i |[s,v] remains within node
set Xy and rerouting commodity i cannot decrease y(δout(X)). We can thus conclude

that y′(δout(X)) ≥ y(δout(X)) for each unsplittable flow y′ with y
LBP� y′. Since there

are only finitelymany different unsplittable flows and in view of this property, choose y
with y(δout(X)) maximal. We prove two important properties of y and X :

(P1’) δin(X) = ∅.
Indeed, if there is an arc (w, v) ∈ δin(X), let y′ with y

LBP� y′ be such that
node v ∈ X is LBP-reachable for some commodity i w.r.t. y′. Rerouting
commodity i along an arbitrary s-v-path Q with (w, v) ∈ Q increases flow
on (w, v) as well as on some arc in δout(X), contradicting the maximality
of y(δout(X)).

(P2’) There is an arc a ∈ δout(X) with ya > 0 and ya ≥ xa .
Consider a node v ∈ V \X . By assumption, there is a v-ti -path in D for some
commodity i . By Property (P1’), node ti must also lie in V \X . Therefore, again
by Property (P1), we have

y(δout(X)) = x(δout(X)) = d(V \X) ≥ di > 0.

This implies the existence of arc a with the properties stated above.
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Consider an arc a = (v,w) ∈ δout(X) as in (P2’) and some commodity i with a ∈ Py
i .

Since w ∈ V \X and δin(X) = ∅ by (P1’), it is impossible for any sequence of LBP

augmentations to add or delete flow on arc a. In particular, y′
a = ya ≥ xa and a ∈ Py′

i

for each unsplittable flow y′ with y
LBP� y′. By Proposition 1, node v is eLBP-reachable

for commodity i w.r.t. y. Hence node w is eLBP-reachable for commodity i w.r.t. y,
a contradiction to w /∈ X . 
�
Lemma 3 For any unsplittable flow y and any arc a, there exists an unsplittable flow y′
with y

LBP� y′ such that y′
a ≥ xa.

Proof Assume by contradiction that there exists an unsplittable flow y and an arc a =
(v,w) ∈ A such that y′

a < xa for any y′ with y
LBP� y′. Notice that flow on arc a can

never be decreased by an LBP augmentation step. We may choose y in such a way
that ya ismaximal. ByLemma 2, nodew is LBP-reachable for some commodity i w.r.t.
an unsplittable flow y′ with y

LBP� y′. Rerouting commodity i along any s-w-path Q
with a ∈ Q increases the flow on arc a, hence contradicting its maximality. 
�

We can now prove Theorem 3: Let y be an arbitrary unsplittable flow. By Lemma 3,
for each arc a ∈ A there exists an unsplittable flow y′ with y

LBP� y′ such that y′
a ≥ xa .

Notice that any flow resulting from y′ by a sequence of LBP augmentation has a flow
value on a of at least xa − dmax. Going through all arcs successively leads to a final
unsplittable flow with the desired properties. This concludes the proof of Theorem 3.

In order to prove Corollary 2, notice that for every arc a ∈ A and for the last
commodity j being removed from a in anLBP augmentation step, the final unsplittable
flow y satisfies y(a) + d j ≥ x(a). This implies that

y(a) ≥ x(a) − d j ≥ xa − max
i

di ,

where the maximum is only taken over those commodities i such that arc a lies on
some s-ti -path.

3.2 Problem variants for unsplittable flows satisfying arc-wise lower bounds

In the context of unsplittable flows respecting arc-wise upper bounds, several interest-
ing problem variants have been considered in the literature; see, e.g., [7]. Theorem 2
immediately implies approximation results for the minimum congestion problem
whose objective is to bound the violation of given upper bounds (arc capacities).
Another prominent problem, the minimum number of rounds problem, asks for a par-
tition of the set of commodities into a minimum number of subsets (rounds) such
that each subset can be routed unsplittably without violating given arc capacities.
Finally, the maximum routable demand problem asks for a feasible (w.r.t. arc capaci-
ties) unsplittable routing of a subset of commodities of maximum total demand. We
refer to [4] for further details.

With a view to these optimization problems, the (fractional) flow x in Theorem 2
plays the role of a solution to a fractional relaxation obeying given arc capacities.
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Similarly, Theorem 3 is relevant for unsplittable flow problems with lower capacities
on the arcs. If we assume that a given (fractional) flow x obeys lower arc capacities,
a meaningful question in this context is, how many copies of the commodities are
needed such that one can find an unsplittable routing y of all copies such that ya ≥ xa
for all arcs a ∈ A.

Corollary 3 Given a fractional flow x, let α ≥ 1 be such that α · xa ≥ maxi di for
all arcs a ∈ A, where the maximum is taken over all i with arc a lying on an s-ti -
path. Then, at most 	1 + α
 copies of commodities are necessary in order to find an
unsplittable routing y of all those copies such that ya ≥ xa for all a ∈ A.

Proof Define x̃ by x̃a = 	1+α
 · xa for each a ∈ A. Hence x̃ satisfies 	1+α
 copies
of each demand di , for i = 1, . . . , k. By Corollary 2, there exists an unsplittable flow y
satisfying 	1+α
 copies of each demand di , i = 1, . . . , k, such that ya ≥ x̃a−maxi di
for all a ∈ A, where the maximum is taken over all commodities i with arc a lying
on an s-ti -path. Since α · xa ≥ maxi di for all a ∈ A, and by definition of x̃ , we
get ya ≥ 	1 + α
 · xa − α · xa ≥ xa , for all a ∈ A. 
�

4 Combining lower and upper bounds

In this sectionweobtain results on unsplittable flows that simultaneously obey arc-wise
upper and lower bounds with respect to the given fractional flow x . We first consider
the special case where demands are multiples of each other, i.e., dk | dk−1 | . . . | d1,
and show how Theorem 4 can be obtained via methods introduced by Kolliopoulos
and Stein [11], Skutella [16], andMartens et al. [12]. Tomake the terminology precise,
for a, b ∈ R>0 we write a | b if there is an integer c ∈ Z such that a · c = b. In this
case we say that b is a-integral.

Proof of Theorem 4 In the considered case, the demands are all dk -integral for themini-
mumdemand value dk . By scaling the demand values and the given flow x accordingly,
we may assume that dk = 1 such that all demands are integral. Therefore, by Theo-
rem 1, the given fractional flow x is a convex combination of dk-integral flows whose
flow values on the arcs differ from x by (strictly) less than dk . It therefore suffices
to show that any dk-integral flow can be written as a convex combination of unsplit-
table flows whose flow values differ by at most d1 − dk . The proof of the following
proposition thus concludes the proof of Theorem 4. 
�
Proposition 2 If dk | dk−1 | . . . | d1, then any dk-integral flow x can be written as
a convex combination of unsplittable flows such that each such unsplittable flow y
satisfies

xa − (d1 − dk) ≤ ya ≤ xa + (d1 − dk) for all a ∈ A.

Proof We use induction on the number of commodities k. For the case k = 1, the dk-
integral flow x is, in fact, an unsplittable flow andwe are done. Thus assume that k > 1
and the proposition holds for the case of k − 1 commodities.
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Any dk-integral flow x can be easily interpreted to route commodity k unsplittably:
choose a flow-carrying s-tk-path Pk , decrease the flow along Pk by dk , and delete
commodity k from the instance. This leaves us with a dk-integral flow x ′ satisfying the
remaining demands dk−1, . . . , d1, which are all dk−1-integral. Notice that it suffices
to show that x ′ can be written as a convex combination of unsplittable flows satisfying
demands dk−1, . . . , d1 such that each such unsplittable flow y satisfies

x ′
a − (d1 − dk) ≤ ya ≤ x ′

a + (d1 − dk) for all a ∈ A.

By scaling the demand values dk, . . . , d1 and flow x ′ accordingly, we may
assume dk−1 = 1 such that all remaining demands dk−1, . . . , d1 are integral. Thus,
by Theorem 1 and since dk | 1, the dk-integral flow x ′ can be written as a convex
combination of integral flows with each such integral flow x ′′ satisfying

x ′
a − (1 − dk) ≤ x ′′

a ≤ x ′
a + (1 − dk) for all a ∈ A. (6)

By induction, each such integral flow x ′′ can again be written as a convex combination
of unsplittable flows y with

x ′′
a − (d1 − 1) ≤ ya ≤ x ′′

a + (d1 − 1) for all a ∈ A. (7)

In summary, x ′ can be written as a convex combination of unsplittable flows y such
that, due to (6) and (7),

x ′
a − (d1 − dk) ≤ ya ≤ x ′

a + (d1 − dk) for all a ∈ A.

This concludes the proof. 
�
It is not difficult to see that there is an efficient algorithm that computes the convex

combinations in Theorem 4 and Proposition 2. We refer to [12,16] for further details.
Moreover, analogously to [16], Theorem 4 can be slightly strengthened:

Corollary 4 If dk | dk−1 | . . . | d1, then any flow x can be written as a convex
combination of unsplittable flows such that each such unsplittable flow y satisfies

xa − dmax ≤ ya ≤ xa + max
i :a∈Py

i

di for all a ∈ A.

We finally turn to the proof of Theorem 5. The basic idea is to round down the
demand values such that the rounded demands satisfy the conditions of Theorem 4.
More precisely, the rounded demand values are of the form d̄i = 2�log(di /dmin)�dmin
where dmin := mini=1,...,k di . The flow x has to be modified accordingly in a careful
way. Then, we apply Theorem 4 to the modified flow x̄ which yields an unsplittable
flow ȳ satisfying the rounded demands. Finally, we increase flow on the paths of ȳ to
create an unsplittable flow y meeting the original demand values. Further details are
provided in Algorithm 1. Theorem 5 then follows from the next lemma.
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Algorithm 1:
Input : flow x on D satisfying demands d1, . . . , dk ;
Output: unsplittable flow y given by an s-ti -path for i = 1, . . . , k;

for i = 1, . . . , k, set d̄i := dmin · 2�log(di /dmin)�;
compute a flow x̄ satisfying demands d̄1, . . . , d̄k with xa

2 ≤ x̄a ≤ xa for all a ∈ A;
apply Theorem 4 to x̄ , yielding an unsplittable flow ȳ for demands d̄1, . . . , d̄k ;

return unsplittable flow y for original demands with Py
i = P ȳ

i , for i = 1, . . . , k;

Lemma 4 Algorithm 1 computes an unsplittable flow y satisfying (5).

Proof To prove correctness of Algorithm 1, we need to argue that there is a flow x̄
satisfying demands d̄1, . . . , d̄k with

xa
2 ≤ x̄a ≤ xa for all a ∈ A.

By definition, d̄i ≤ di < 2d̄i and, thus, di − d̄i <
di
2 for all i = 1, . . . , k. Therefore,

since theflow x
2 satisfies demands d1

2 , . . . ,
dk
2 , thewell knowncut condition for network

flows (see, e.g., [1]) implies that there is a flow x ′ satisfying demands d1−d̄1, . . . , dk−
d̄k with x ′

a ≤ xa
2 for all a ∈ A. This implies that x̄ := x − x ′ has the desired properties

stated above.
It remains to show that y satisfies the lower and upper bounds (5). Applying Corol-

lary 4 (or Theorem 4) to x̄ yields an unsplittable flow ȳ such that

x̄a − d̄max ≤ ȳa ≤ x̄a + d̄max for all a ∈ A.

By construction of flow y, we obtain the lower bounds

ya ≥ ȳa ≥ x̄a − d̄max ≥ xa
2

− dmax for all a ∈ A.

In order to prove the upper bounds, let dia be the maximum demand value routed
across arc a ∈ A. Corollary 4 yields ȳa ≤ x̄a + d̄ia for all a ∈ A. Therefore,

ya =
∑

i :a∈Pi ,
i �=ia

di + dia ≤ 2
∑

i :a∈Pi ,
i �=ia

d̄i + dia ≤ 2 x̄a + dia ≤ 2 xa + dmax.

This concludes the proof. 
�

5 Conclusion

We conclude by pointing out interesting open problems and conjectures related to the
results presented in this paper.

While the original proof of Theorem 2 in [4] comes with a polynomial-time algo-
rithm for computing an unsplittable flow y satisfying (2), our proof seems to only give
rise to an exponential time algorithm. The number of augmentation steps needed
to turn an arbitrary unsplittable flow into an unsplittable flow y satisfying (2) is
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in O
(
(k + 2)n−1

)
, see Appendix A for further details. We conjecture, however, that

there always exists a sequence of UBP augmentation steps leading to an unsplittable
flow y satisfying (2) whose length is polynomially bounded. We also conjecture that
a polynomially bounded sequence of LBP augmentation steps exists in the context of
Theorem 3.

With respect to the combination of upper and lower bounds discussed in Sect. 4,
we conjecture that the bounds given in Theorem 5 can be strengthened as follows:

Conjecture 1 For a given flow x , there exists an unsplittable flow y such that

xa − dmax ≤ ya ≤ xa + dmax for all a ∈ A.

In [4], it has already been pointed out that one main application of the unsplittable
flow problem is a parallel machine scheduling problem with makespan objective. In
this context, Lars Rohwedder (personal communication, February 2020) pointed out a
more general connection between unsplittable flows and machine scheduling. Proving
Conjecture 1 in a constructive manner (i.e., giving an efficient algorithm that turns x
into y), would imply a constant-factor approximation algorithm for the problem of
minimizing themaximumflow-time in a setting of unrelatedmachines. The best known
approximation factor for this problem is O(log n), due to Bansal and Kulkarni [3].
Further details can be found in Appendix B.

We conjecture that any flow x can bewritten as a convex combination of unsplittable
flows y satisfying (2) and (3). This can be equivalently stated as follows (cf., e.g., [12]):

Conjecture 2 Given arbitrary cost c = (ca)a∈A on the arcs and a (fractional) flow x ,
there exists an unsplittable flow y such that c(y) ≤ c(x) and

xa − dmax ≤ ya ≤ xa + dmax for all a ∈ A.

This conjecture is a strengthening of a famous, yet still unresolved conjecture of
Goemans (see [16])which does not take the lower bounds on y into account. Theorem4
implies that Conjecture 2 is true for the special case of demands that are multiples of
each other (cp. Theorem 1 for the case of unit demands).

We hope that the new techniques and methods presented in Sects. 2 and 3 will turn
out to be of further use and stimulate progress towards these open problems. They
might also be useful in the context of k-splittable flows considered, e.g., in [9,15].
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A An upper bound on the number of UBP augmentation steps

In this section we prove an upper bound on the number of UBP augmentation steps
that are necessary to turn an arbitrary unsplittable flow into one that satisfies (2). To
this end, we first derive an upper bound on the number of UBP augmentation steps
needed to make nodes UBP-reachable.

Lemma 5 For 1 ≤ q ≤ n, let Tq be the minimum number such that for any unsplit-
table flow y there exists a sequence of UBP augmentation steps and corresponding
unsplittable flows y = y0, y1, . . . , yTq with

∣
∣
{
v ∈ V | ∃ � ∈ [Tq ] : v is UBP-reachable w.r.t. y�

}∣
∣ ≥ q.

Then, T1 = T2 = 0, and for any 2 ≤ q ≤ n − 1 it holds that Tq+1 ≤ (k + 2)(Tq + 1).

Proof Notice that T1 = T2 = 0 since s is UBP-reachable w.r.t. any unsplittable
flow y and there is always an arc a = (s, v) ∈ δout(s) with ya ≤ xa such that also
node v is UBP-reachable w.r.t. y. It remains to prove that Tq+1 ≤ (k + 2)(Tq + 1)
for 2 ≤ q ≤ n − 1.

Starting fromunsplittable flow y0, we construct a sequence of atmost (k+2)(Tq+1)
UBP augmentation steps, structured into at most k + 2 phases 0, 1, . . . , k, k + 1, each
consisting of at most Tq + 1 UBP augmentation steps: Phase 0 consists of exactly Tq
UBPaugmentation steps andproduces a sequence of unsplittable flows y0, y1, . . . , yTq

with

X = {
v ∈ V | ∃ � ∈ [Tq ] : v is UBP-reachable w.r.t. y�

}
and |X | ≥ q;

by definition, s ∈ X . If |X | ≥ q + 1, we are done. Otherwise, as soon as some node
in V \X becomes UBP-reachable w.r.t. an unsplittable flow occurring in one of the
next k phases 1, . . . , k, we are done. In what follows, we thus assume that this does
not happen, and construct these phases in such a way that some node w ∈ V \X then
becomes UBP-reachable in phase k + 1.

Notice that, as long as only nodes v ∈ X become UBP-reachable, commodities are
only rerouted along s-v-paths lying within X , and no flow is ever added to an arc that
does not lie within X .

For i = 1, . . . , k, the purpose of phase i is to ensure that commodity i is routed
along a path that does not contain an arc in δin(X). Phase i works as follows. Let Pi be
commodity i’s path at the beginning of phase i , and let vi be the last node on P lying
in X . Sincewe assume that no node in V \X becomesUBP-reachable in phase i , we can
choose a sequence of Tq UBP augmentation steps such that all nodes in X eventually
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become UBP-reachable. In particular, node vi becomes UBP-reachable along some
s-vi -path Q after at most Tq UBP augmentation steps. At this point, we terminate the
phase with one last UBP augmentation step that reroutes commodity i along Q.

Thus, when phase k terminates with unsplittable flow ȳ, no commodity is routed
along a path containing an arc in δin(X). In particular, ȳ

(
δin(X)

) = 0 such that

ȳ
(
δout(X)

) =
∑

i :ti∈V \X di ≤ x
(
δout(X)

)
.

Thus, there is an arc a = (v,w) ∈ δout(X) with ȳa ≤ xa . Phase k + 1 then consists
of a sequence of at most Tq UBP augmentation steps until v or some node in V \X
becomes UBP-reachable. As soon as v becomes UBP-reachable along an s-v-path Q,
also w is UBP-reachable along the s-w-path that we obtain by adding arc a = (v,w)

to Q. 
�
Corollary 5 Using the terminology of Lemma 5, Tn ∈ O

(
(k + 2)n−2

)
. In particular,

using the general strategy described in Sect. 2, any unsplittable flow can be turned into
one that satisfies the arc-wise upper bounds (2) by a sequence of at most O

(
(k+2)n−1

)

UBP augmentation steps.

Notice that the upper bound O
(
(k+2)n−1

)
is asymptotically much smaller than the

trivial upper bound given by the number of unsplittable flows, which may be as large
as 2k(n−2) since there can be up to 2n−2 different s-ti -path for each commodity i =
1, . . . , k.

B Unsplittable flows and scheduling

Asmentioned in Sect. 5, proving Conjecture 1 via an efficient algorithmwould imply a
constant-factor approximation algorithm for the problem of minimizing the maximum
flow-time in a setting with unrelated machines. In what follows, we describe this
connection between unsplittable flows and the maximum flow-time problem, which
is due to Lars Rohwedder (personal communication, February 2020). An anonymous
referee pointed out a slight improvement that yields performance ratio 3, as described
below.

We are given a set J of n jobs and a set M of m machines. Each job j is specified
by its release date r j and a processing time p j , which does not depend on the chosen
machine. We assume the release times to be distinct, i.e., r1 < · · · < rn , which can
be achieved by permitting infinitesimally small perturbations. We consider the non-
preemptive casewhere jobs cannot be interrupted once started. Furthermore, each job j
can only be processed on a restricted subset of machines Mj ⊆ M . The objective is to
minimize the maximum flow-time of all jobs, where the flow-time of job j is defined
as the amount of time job j spends in the system, i.e., its completion time minus its
release date.

Let OPT be the maximum flow-time of an optimal schedule of the jobs. To find a
schedule such that the maximum flow-time is provably within O(OPT ), we proceed
as follows:
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(S1) Solve the following linear programming relaxation of the problem:

min �OPT
s.t.

∑

j :r j∈[t,t ′]
xi j ≤ (t ′ − t) + �OPT for all i ∈ M, t, t ′ ∈ {r1, . . . , rn}, t ≤ t ′

(8)
∑

i∈M
xi j = p j for all j ∈ J , (9)

xi j ≥ 0 for all j ∈ J , i ∈ M, (10)

xi j = 0 for all j ∈ J , i /∈ Mj . (11)

Here, variable xi j for j ∈ J and i ∈ M corresponds to the amount of time
job j is being processed on machine i . For Constraint (8), notice that any job
released during the interval [t, t ′] must be completed by time t ′ + �OPT. It
suffices to consider intervals [t, t ′] such that t and t ′ are release dates of jobs as
this corresponds to the tightest constraints. Constraint (9) ensures that each job
is completely processed. Constraints (10) and (11) force values xi j to be non-
negative, with the possibility of being positive only if job j may be processed
on machine i , i.e., only if i ∈ Mj . We refer to [3] for more details.
Since �OPT is the optimal value of the relaxed version, we have �OPT ≤ OPT.

(S2) Construct a digraph D = (V , A) as follows (see Fig. 8 for an illustration): Add
a single source node s and, for each job j ∈ J , a sink node t j with demand d j :=
p j , which is the processing time of job j . For each machine i ∈ M , we add
one copy of nodes r i1, . . . , r

i
n .

Then, add arcs (s, r i1), (r
i
1, r

i
2), . . . , (r

i
n−1, r

i
n), and, for each job j ∈ J , add

arc (r ij , t j ) if and only if i ∈ Mj . Notice that, for each job j ∈ J and each

machine i ∈ Mj , there exists a unique path using nodes r i1, . . . , r
i
j .

(S3) The fractional solution computed in (S1) can now be translated into a fractional
flow x ∈ R

A≥0 satisfying the demands in the digraph constructed in Step (S2).
For each job j ∈ J and each machine i ∈ Mj , we route the amount xi j along
the unique path using nodes r i1, . . . , r

i
j . Notice that for job j ∈ J with j �= 1,

machine i ∈ M , and arc a = (r ij−1, r
i
j ),

x(a) =
∑

�≥ j

xi�. (12)

For the sake of the argument, we assume that there is an efficient algorithm that,
for a given flow x , always produces an unsplittable flow y with the properties stated
in Conjecture 1. For the case of the scheduling digraph illustrated in Fig. 8, this
unsplittable flow y satisfies

x(a) − pmax ≤ y(a) ≤ x(a) + pmax for all arcs a, (13)
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Fig. 8 We are given a set J = { j1, . . . , j5} of five jobs and a set M = {m1,m2,m3} of three machines.
Each job can only be processed on a restricted number of machines: M1 = {m1,m2}, M2 = {m1,m2},
M3 = {m1,m2,m3}, M4 = {m2,m3}, M5 = {m2,m3}. The construction of the corresponding digraph,
as explained in (S2), is illustrated above

where pmax is the maximum processing time of jobs in J . The unsplittable flow y can
be naturally translated into an assignment (yi j )i∈M, j∈J of jobs to machines: job j is
assigned tomachine i ∈ Mj , if and only if demand p j is routed along nodes r i1, . . . , r

i
j .

Then, for all i ∈ M , j, k ∈ {1, . . . , n}, j ≤ k,

∑

r�∈[r j ,rk ]
yi�

(12)= y
(
(r ij−1, r

i
j )

) − y
(
(r ik, r

i
k+1)

)

(13)≤
(
x
(
(r ij−1, r

i
j )

) + pmax

)
−

(
x
(
(r ik, r

i
k+1)

) − pmax

)

(12)=
∑

r�∈[r j ,rk ]
xi� + 2pmax

(12)≤ (
rk − r j

) + �OPT + 2pmax

(S1)≤ (
rk − r j

) + 3 · OPT,

where we use the fact that the maximum processing time pmax is a lower bound
on OPT. We conclude that the maximum flow-time of distribution (yi j )i∈M, j∈J is at
most 3 · OPT which means that it is within O(OPT).
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