27 research outputs found

    Clip-level feature aggregation : a key factor for video-based person re-identification

    Get PDF
    In the task of video-based person re-identification, features of persons in the query and gallery sets are compared to search the best match. Generally, most existing methods aggregate the frame-level features together using a temporal method to generate the clip-level fea- tures, instead of the sequence-level representations. In this paper, we propose a new method that aggregates the clip-level features to obtain the sequence-level representations of persons, which consists of two parts, i.e., Average Aggregation Strategy (AAS) and Raw Feature Utilization (RFU). AAS makes use of all frames in a video sequence to generate a better representation of a person, while RFU investigates how batch normalization operation influences feature representations in person re- identification. The experimental results demonstrate that our method can boost the performance of existing models for better accuracy. In particular, we achieve 87.7% rank-1 and 82.3% mAP on MARS dataset without any post-processing procedure, which outperforms the existing state-of-the-art

    Towards Detecting Pneumonia Progression in COVID-19 Patients by Monitoring Sleep Disturbance Using Data Streams of Non-Invasive Sensor Networks

    Get PDF
    Pneumonia caused by COVID-19 is a severe health risk that sometimes leads to fatal outcomes. Due to constraints in medical care systems, technological solutions should be applied to diagnose, monitor, and alert about the disease’s progress for patients receiving care at home. Some sleep disturbances, such as obstructive sleep apnea syndrome, can increase the risk for COVID-19 patients. This paper proposes an approach to evaluating patients’ sleep quality with the aim of detecting sleep disturbances caused by pneumonia and other COVID-19-related pathologies. We describe a non-invasive sensor network that is used for sleep monitoring and evaluate the feasibility of an approach for training a machine learning model to detect possible COVID-19-related sleep disturbances. We also discuss a cloud-based approach for the implementation of the proposed system for processing the data streams. Based on the preliminary results, we conclude that sleep disturbances are detectable with affordable and non-invasive sensors.A.D., E.Z., P.L., and V.T. acknowledge the partial funding by the Ss. Cyril and Methodius University in Skopje, Faculty of Computer Science and Engineering. This work was also partially funded by FCT/MEC through national funds and co-funded by FEDER—PT2020 partnership agreement under the project UIDB/50008/2020 (Este trabalho é parcialmente financiado pela FCT/MEC através de fundos nacionais e cofinanciado pelo FEDER, no âmbito do Acordo de Parceria PT2020 no âmbito do projeto UIDB/50008/2020). This work was also partially funded by National Funds through the FCT—Foundation for Science and Technology, I.P., within the scope of the project UIDB/00742/2020. Furthermore, I.P. would like to thank the Politécnico de Viseu for their support. This article is based upon work from Sheldon COST Action CA16226 Indoor Living Space Improvement: Smart Habitat for the Elderly, supported by COST (European Cooperation in Science and Technology). COST is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation. www.cost.eu (accessed on 1 April 2021)

    Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates

    No full text
    Supported lipid bilayers (SLBs) mimic biological membranes and are a versatile platform for a wide range of biophysical research fields including lipid-protein interactions, protein-protein interactions and membrane-based biosensors. the quartz crystal microbalance with dissipation monitoring (QCM-D) has had a pivotal role in understanding SLB formation on various substrates. as shown by its real-time kinetic monitoring of SLB formation, QCM-D can probe the dynamics of biomacromolecular interactions. We present a protocol for constructing zwitterionic SLBs supported on silicon oxide and titanium oxide, and discuss technical issues that need to be considered when working with charged lipid compositions. Furthermore, we explain a recently developed strategy that uses an amphipathic, a-helical (AH) peptide to form SLBs on gold and titanium oxide substrates. the protocols can be completed in less than 3 h
    corecore