142 research outputs found
An Empirical Methodology for Detecting and Prioritizing Needs during Crisis Events
In times of crisis, identifying the essential needs is a crucial step to
providing appropriate resources and services to affected entities. Social media
platforms such as Twitter contain vast amount of information about the general
public's needs. However, the sparsity of the information as well as the amount
of noisy content present a challenge to practitioners to effectively identify
shared information on these platforms. In this study, we propose two novel
methods for two distinct but related needs detection tasks: the identification
of 1) a list of resources needed ranked by priority, and 2) sentences that
specify who-needs-what resources. We evaluated our methods on a set of tweets
about the COVID-19 crisis. For task 1 (detecting top needs), we compared our
results against two given lists of resources and achieved 64% precision. For
task 2 (detecting who-needs-what), we compared our results on a set of 1,000
annotated tweets and achieved a 68% F1-score
Toward an Interoperable Dynamic Network Analysis Toolkit
To facilitate the analysis of real and simulated data on groups, organizations and societies, tools and measures are needed that can handle relational or network data that is multi-mode, multi-link and multi-time period in which nodes and edges have attributes with possible data errors and missing data. The integrated CASOS dynamic network analysis toolkit described in this paper is an interoperable set of scalable software tools. These tools form a toolchain that facilitate the dynamic extraction, analysis, visualization and reasoning about key actors, hidden groups, vulnerabilities and changes in such data at varying levels of fidelity. We present these tools and illustrate their capabilities using data collected from a series of 368 texts on an organizational system interfaced with covert networks in the Middle East
Statistical Inference in a Directed Network Model with Covariates
Networks are often characterized by node heterogeneity for which nodes
exhibit different degrees of interaction and link homophily for which nodes
sharing common features tend to associate with each other. In this paper, we
propose a new directed network model to capture the former via node-specific
parametrization and the latter by incorporating covariates. In particular, this
model quantifies the extent of heterogeneity in terms of outgoingness and
incomingness of each node by different parameters, thus allowing the number of
heterogeneity parameters to be twice the number of nodes. We study the maximum
likelihood estimation of the model and establish the uniform consistency and
asymptotic normality of the resulting estimators. Numerical studies demonstrate
our theoretical findings and a data analysis confirms the usefulness of our
model.Comment: 29 pages. minor revisio
Nitration of the Egg-Allergen Ovalbumin Enhances Protein Allergenicity but Reduces the Risk for Oral Sensitization in a Murine Model of Food Allergy
Nitration of proteins on tyrosine residues, which can occur due to polluted air under "summer smog" conditions, has been shown to increase the allergic potential of allergens. Since nitration of tyrosine residues is also observed during inflammatory responses, this modification could directly influence protein immunogenicity and might therefore contribute to food allergy induction. In the current study we have analyzed the impact of protein nitration on sensitization via the oral route.BALB/c mice were immunized intragastrically by feeding untreated ovalbumin (OVA), sham-nitrated ovalbumin (snOVA) or nitrated ovalbumin (nOVA) with or without concomitant acid-suppression. To analyze the impact of the sensitization route, the allergens were also injected intraperitoneally. Animals being fed OVA or snOVA under acid-suppressive medication developed significantly elevated levels of IgE, and increased titers of specific IgG1 and IgG2a antibodies. Interestingly, oral immunizations of nOVA under anti-acid treatment did not result in IgG and IgE formation. In contrast, intraperitoneal immunization induced high levels of OVA specific IgE, which were significantly increased in the group that received nOVA by injection. Furthermore, nOVA triggered significantly enhanced mediator release from RBL cells passively sensitized with sera from allergic mice. Gastric digestion experiments demonstrated protein nitration to interfere with protein stability as nOVA was easily degraded, whereas OVA and snOVA remained stable up to 120 min. Additionally, HPLC-chip-MS/MS analysis showed that one tyrosine residue (Y(107)) being very efficiently nitrated is part of an ovalbumin epitope recognized exclusively after oral sensitization.These data indicated that despite the enhanced triggering capacity in existing allergy, nitration of OVA may be associated with a reduced de novo sensitizing capability via the oral route due to enhanced protein digestibility and/or changes in antibody epitopes
Heat-Induced Structural Changes Affect OVA-Antigen Processing and Reduce Allergic Response in Mouse Model of Food Allergy
BACKGROUND AND AIMS: The egg protein ovalbumin (OVA) belongs to six most frequent food allergens. We investigated how thermal processing influences its ability to induce allergic symptoms and immune responses in mouse model of food allergy. METHODOLOGY/PRINCIPAL FINDINGS: Effect of increased temperature (70°C and 95°C) on OVA secondary structure was characterized by circular dichroism and by the kinetics of pepsin digestion with subsequent HPLC. BALB/c mice were sensitized intraperitoneally and challenged with repeated gavages of OVA or OVA heated to 70°C (h-OVA). Levels of allergen-specific serum antibodies were determined by ELISA (IgA and IgGs) or by β-hexosaminidase release test (IgE). Specific activities of digestive enzymes were determined in brush border membrane vesicles of jejunal enterocytes. Cytokine production and changes in regulatory T cells in mesenteric lymph nodes and spleen were assessed by ELISA and FACS. Heating of OVA to 70°C caused mild irreversible changes in secondary structure compared to boiling to 95°C (b-OVA), but both OVA treatments led to markedly different digestion kinetics and Tregs induction ability in vitro, compared to native OVA. Heating of OVA significantly decreased clinical symptoms (allergic diarrhea) and immune allergic response on the level of IgE, IL-4, IL-5, IL-13. Furthermore, h-OVA induced lower activities of serum mast cell protease-1 and enterocyte brush border membrane alkaline phosphatase as compared to native OVA. On the other hand h-OVA stimulated higher IgG2a in sera and IFN-γ secretion by splenocytes. CONCLUSIONS: Minor irreversible changes in OVA secondary structure caused by thermal processing changes both its digestion and antigenic epitopes formation, which leads to activation of different T cell subpopulations, induces shift towards Th1 response and ultimately reduces its allergenicity
- âŚ