26 research outputs found
A systematic review of magnetic resonance imaging in patients with an implanted vagus nerve stimulation system
Purpose
Vagus nerve stimulation (VNS) is an effective adjunctive treatment for drug-resistant epilepsy (DRE) and difficult-to-treat depression (DTD). More than 125.000 patients have been implanted with VNS Therapy® System (LivaNova PLC) since initial approval. Patients with DRE often require magnetic resonance imaging (MRI) of the brain during the course of their disease. VNS Therapy System devices are labeled to allow MRI under certain conditions; however, there are no published comprehensive articles about the real-world experience using MRI in patients with implanted VNS devices.
Methods
A systematic review in accordance with PRISMA statement was performed using PubMed database. Full-length articles reporting MRI (1.5 T or 3 T scanner) of patients with implanted VNS for DRE or DTD and published since 2000 were included. The primary endpoint was a positive outcome that was defined as a technically uneventful MRI scan performed in accordance with the VNS Therapy System manufacturer guidelines and completed according to the researchers’ planned scanning protocol without harm to the patient.
Results
Twenty-six articles were eligible with 25 articles referring to the VNS Therapy System, and 216 patients were included in the analysis. No serious adverse events or serious device-related adverse events were reported. MRI scan was prematurely terminated in one patient due to a panic attack.
Conclusion
This systematic review indicates that cranial MRI of patients with an implanted VNS Therapy System can be completed satisfactorily and is tolerable and safe using 1.5 T and 3 T MRI scanners when performed in adherence to the VNS manufacturer’s guidelines
Proposed Definition of Experimental Secondary Ischemia for Mouse Subarachnoid Hemorrhage.
Inconsistency in outcome parameters for delayed cerebral ischemia (DCI) makes it difficult to compare results between mouse studies, in the same way inconsistency in outcome parameters in human studies has for long obstructed adequate comparison. The absence of an established definition may in part be responsible for the failed translational results. The present article proposes a standardized definition for DCI in experimental mouse models, which can be used as outcome measure in future animal studies. We used a consensus-building approach to propose a definition for "experimental secondary ischemia" (ESI) in experimental mouse subarachnoid hemorrhage that can be used as an outcome measure in preclinical studies. We propose that the outcome measure should be as follows: occurrence of focal neurological impairment or a general neurological impairment compared with a control group and that neurological impairment should occur secondarily following subarachnoid hemorrhage (SAH) induction compared with an initial assessment following SAH induction. ESI should not be used if the condition can be explained by general anesthesia or if other means of assessments sufficiently explain function impairment. If neurological impairment cannot reliably be evaluated, due to scientific setup. Verification of a significant secondary impairment of the cerebral perfusion compared with a control group is mandatory. This requires longitudinal examination in the same animal. The primary aim is that ESI should be distinguished from intervention-related ischemia or neurological deficits, in order establish a uniform definition for experimental SAH in mice that is in alignment with outcome measures in human studies
A systematic review of magnetic resonance imaging in patients with an implanted vagus nerve stimulation system
Purpose!#!Vagus nerve stimulation (VNS) is an effective adjunctive treatment for drug-resistant epilepsy (DRE) and difficult-to-treat depression (DTD). More than 125.000 patients have been implanted with VNS Therapy® System (LivaNova PLC) since initial approval. Patients with DRE often require magnetic resonance imaging (MRI) of the brain during the course of their disease. VNS Therapy System devices are labeled to allow MRI under certain conditions; however, there are no published comprehensive articles about the real-world experience using MRI in patients with implanted VNS devices.!##!Methods!#!A systematic review in accordance with PRISMA statement was performed using PubMed database. Full-length articles reporting MRI (1.5 T or 3 T scanner) of patients with implanted VNS for DRE or DTD and published since 2000 were included. The primary endpoint was a positive outcome that was defined as a technically uneventful MRI scan performed in accordance with the VNS Therapy System manufacturer guidelines and completed according to the researchers' planned scanning protocol without harm to the patient.!##!Results!#!Twenty-six articles were eligible with 25 articles referring to the VNS Therapy System, and 216 patients were included in the analysis. No serious adverse events or serious device-related adverse events were reported. MRI scan was prematurely terminated in one patient due to a panic attack.!##!Conclusion!#!This systematic review indicates that cranial MRI of patients with an implanted VNS Therapy System can be completed satisfactorily and is tolerable and safe using 1.5 T and 3 T MRI scanners when performed in adherence to the VNS manufacturer's guidelines