936 research outputs found
Assessment of landfill leachate biodegradability and treatability by means of allochthonous and autochthonous biomasses
The biodegradability and treatability of a young (3 years old) municipal landfill leachate was evaluated by means of chemical oxygen demand (COD) fractionation tests, based on respirometric techniques. The tests were performed using two different biomasses: one cultivated from the raw leachate (autochthonous biomass) and the other collected from a conventional municipal wastewater treatment plant after its acclimation to leachate (allochthonous biomass). The long term performances of the two biomasses were also studied. The results demonstrated that the amount of biodegradable COD in the leachate was strictly dependent on the biomass that was used to perform the fractionation tests. Using the autochthonous biomass, the amount of biodegradable organic substrate resulted in approximately 75% of the total COD, whereas it was close to 40% in the case of the allochthonous biomass, indicating the capacity of the autochthonous biomass to degrade a higher amount of organic compounds present in the leachate. The autochthonous biomass was characterized by higher biological activity and heterotrophic active fraction (14% vs 7%), whereas the activity of the allochthonous biomass was significantly affected by inhibitory compounds in the leachate, resulting in a lower respiration rate (SOUR = 13 mg O2 gVSS-1 h-1 vs 37 mg O2 gVSS-1 h-1). The long-term performance of the autochthonous and allochthonous biomasses indicated that the former was more suitable for the treatment of raw landfill leachate, ensuring higher removal performance towards the organic pollutants
Quantum spatial correlations in high-gain parametric down-conversion measured by means of a CCD camera
We consider travelling-wave parametric down-conversion in the high-gain
regime and present the experimental demonstration of the quantum character of
the spatial fluctuations in the system. In addition to showing the presence of
sub-shot noise fluctuations in the intensity difference, we demonstrate that
the peak value of the normalized spatial correlations between signal and idler
lies well above the line marking the boundary between the classical and the
quantum domain. This effect is equivalent to the apparent violation of the
Cauchy-Schwartz inequality, predicted by some of us years ago, which represents
a spatial analogue of photon antibunching in time. Finally, we analyse
numerically the transition from the quantum to the classical regime when the
gain is increased and we emphasize the role of the inaccuracy in the
determination of the symmetry center of the signal/idler pattern in the
far-field plane.Comment: 21 pages, 11 figures, submitted to J. Mod. Opt. special issue on
Quantum Imagin
An innovative respirometric method to assess the autotrophic active fraction: Application to an alternate oxic-anoxic MBR pilot plant
An innovative respirometric method was applied to evaluate the autotrophic active fraction in an alternate anoxic/oxic membrane bioreactor (MBR) pilot plant. The alternate cycle (AC) produces a complex microbiological environment that allows the development of both autotrophic and heterotrophic species in one reactor. The present study aimed to evaluate autotrophic and heterotrophic active fractions and highlight the effect of different aeration/non aeration ratios in a AC-MBR pilot plant using respirometry. The results outlined that the autotrophic active fraction values were consistent with the nitrification efficiency and FISH analyses, which suggests its usefulness for estimating the nitrifying population. Intermittent aeration did not significantly affect the heterotrophic metabolic activity but significantly affected the autotrophic biomass development. Finally, the heterotrophic active biomass was strongly affected by the wastewater characteristics, whereas the resultant autotrophic biomass was considerably affected by the duration of the aerated phase
Analysis of local shear effects in brick masonry infilled RC frames
Masonry infills panels placed among framed structures meshes have a relevant influence in presence seismic actions in terms of strength stiffness and global displacement capacity. In the case of RC structures, the modifications of internal forces due to infill-frame interaction may be not compatible with surrounding frame members strength especially considering additional shear forces arising at the ends of beams and columns in contact with the panel under lateral actions. Such effects may be in many cases the cause of unexpected brittle collapse mechanisms which compromise the safety of the entire structure. In this paper by means of a double (micromodeling and macromodeling) procedure regarding RC meshes infilled with hollow brick masonry, a parametric study is provided defining a connection between local shear forces in critical frame regions and axial force on diagonal pin jointed strut. Proposed strategy allows to predict effective local shear forces using the simple macromodeling approach to reproduce the effect of masonry infills in models
Modelling failure analysis of RC frame structures with masonry infills under sudden column losses
Robustness of structures is fundamental to limit progressive collapse of buildings in case of accidental loss of columns due to explosions, impacts or materials deterioration. Modelling of progressive collapse response of reinforced concrete (RC) frame structures needs considering extreme geometric and mechanical nonlinearities. Moreover, in the case of infilled frames the collapse mechanism becomes more complex because of the frame-infill interaction. This paper presents a numerical study aimed at proposing: A) an appropriate fiber-section modeling methodology for reinforced concrete frames under large displacement progressive collapse events; b) a new multi-strut fiber macro-element model to account for the influence of masonry infills in the progressive collapse response. Proposed numerical models are developed using the OpenSees software platform. The predictive capacity of the proposed methodology is widely validated in the paper through comparisons with experimental test results and refined numerical simulation pushdown test results. Results show that the new equivalent-strut modeling approach can be suitably employed as a simple assessment method when numerical simulation of progressive collapse scenarios is needed for bare and infilled reinforced concrete frames
Evaluation of the additional shear demand due to frame-infill interaction: a new capacity model
During earthquakes, masonry infills exert a significant stiffening and strengthening action which can be favourable or adverse to face the earthquake-induced demand. Infills transfer the force increment to the RC frame members as an additional shear force. Because of this, local shear failures at the end of the columns, or at the end of the beam-column joints can occur. This is particularly true in the case of non-seismically conforming frame structures, as also shown by post-earthquake damage revealed by recent and past earthquakes. Assessment of this additional shear demand is not possible using the common equivalent strut model for the infills. On the other hand, 2D inelastic models are not computationally effective to be used for seismic analysis of large and complex buildings. Because of this, the actual shear demand on columns is underestimated in most cases. In order to maintain the simplicity of the equivalent strut approach without losing the information about the actual shear force on the columns, the current paper provides a detailed study about the infill-frame shear transfer mechanism. Refined 2D inelastic models of real experimental tests on infilled frames have been realized in OpenSees with the aid of the STKO pre and post processor platform. Shear demand on the columns is extracted as on output of the simulations and compared to the axial force resulting from the same simulations made with the equivalent strut models. An analytical relationship allowing estimate the additional shear demand as a function of the current axial force on the equivalent struts and the geometrical and mechanical properties of the infilled frames is finally proposed. The formula can be easily used to perform shear safety checks of columns adjacent to the infills in seismic analyses
The use of non-invasive field techniques in the study of small topographically closed lakes: two case studies in Sicily (Italy)
Small endhoreic (topografically closed) lakes represent a little percentage
of continental waters but, in arid or sub-arid regions, they develop special
ecosystems potentially prone to ecological involution due to climatic
changes. The mandatory use of light, non-invasive field techniques is
often required, especially in protected areas. In the present work the use
of non-invasive techniques like GPS−based bathymetric and photographic
surveys have been applied to the study of two lakes, Specchio di
Venere and Sfondato (Sicily, southern Italy), both natural reserves. The
comparison between historical surveys and modern GPS−based bathymetries
highlighted the difficulty of using the former for the reconstruction
of climatic-induced variations due to the low number of
measurements (spatial aliasing). In particular, at the intracaldera Lake
Specchio di Venere, a high resolution survey gave new insights into a peculiar
geo-ecosystem whose evolution is driven by both volcanic phenomena
and biomineralization processes. On the contrary, the morphology
of Lake Sfondato floor is much more simple and driven only by the superimposition
of a detrital sedimentation on the initial collapse that generated
the lake. The comparison betweem direct measurements and
estimated changes of lake level, carried out between February 2008 and
October 2009 variations, allowed us to test different hypotheses of hydrological
balances, leading to opposite conclusions with respect to previous
studies and remarking the fundamental importance of direct
measurements in the validation of theoretical hydrological models
Definition of out-of-plane fragility curves for masonry infills subject to combined in-plane and out-of-plane damage
The paper presents the outcomes of a probabilistic assessment framework aimed at defining out-of-plane fragility curves of unreinforced masonry infills walls which have been subjected (or not) prior in-plane damage. A recently developed in-plane (IP)/out-of-plane (OOP) four-strut macro-element model is used to model masonry infills within frames. Out-of-plane incremental dynamic analyses are performed, for a reference infilled frame, based on a suite of 26 ground motion record selection. Peak ground acceleration (PGA) and OOP relative displacement of the midspan node of the infill, are used as intensity measure and damage measure. The outcomes show fragility curves representing the probability of exceeding out-of-plane collapse at a given earthquake intensity as a function of a different combination of geometrical and mechanical parameters, in-plane damage level and supporting conditions. Results are finally summarized by curves relating in-plane interstorey drifts and out-of-plane average collapse PG
Treatment of high strength industrial wastewater with membrane bioreactors for water reuse: Effect of pre-treatment with aerobic granular sludge on system performance and fouling tendency
In this study, the treatment of citrus wastewater with membrane bioreactors (MBRs) under different configurations was investigated for water reuse. In particular, one MBR and one aerobic granular sludge MBR (AGS+MBR) bench scale plants were operated for 60 days. The experimental campaign was divided into two periods. In Phase I, a conventional hollow fiber MBR was employed for the treatment of the raw high strength wastewater, whereas in Phase II a combination of in-series reactors (AGS plus MBR) was adopted for the treatment of the high strength citrus wastewater
The results demonstrated that both plant configurations enabled very high COD removal, with average values close to 99%. Respirometric batch tests revealed a considerable high metabolic activity of the biomass in both plant configurations, with higher values in the AGS+MBR. It was speculated that the MBR reactor enriched in active biomass deriving from the erosion of the external granule layers in the upstream reactor. In terms of fouling tendency, higher resistance to filtration was observed in the AGS+MBR plant, also characterized by higher irremovable resistance increase compared to the MBR plant that might severely affect the membrane service life
Full scale tests of the base-isolation system for an emergency hospital
The paper presents the results of some full-scale tests regarding the base-isolation system of the emergency room building of the polyclinic hospital in Palermo (Italy). This building has been recently realized and its base isolation system is characterized by double friction pendulum isolators. Static lateral pushing tests were aimed at identifying fundamental mechanical properties of the whole isolation level (e.g. friction forces and stiffness) in order to verify the agreement with the design hypotheses. Further dynamic tests provided different displacements of the isolated base followed by the instantaneous release (snap-back tests), in order to verify the effectiveness, the mechanical parameter in dynamics and re-centering capacity of the isolation system. The design of both the types of test and the respective results and interpretations are illustrated in the paper highlighting a number of issues arising when arranging such kind of investigations on full scale buildings
- …