29 research outputs found

    Loss of DPP6 in neurodegenerative dementia : a genetic player in the dysfunction of neuronal excitability

    Get PDF
    Emerging evidence suggested a converging mechanism in neurodegenerative brain diseases (NBD) involving early neuronal network dysfunctions and alterations in the homeostasis of neuronal firing as culprits of neurodegeneration. In this study, we used paired-end short-read and direct long-read whole genome sequencing to investigate an unresolved autosomal dominant dementia family significantly linked to 7q36. We identified and validated a chromosomal inversion of ca. 4Mb, segregating on the disease haplotype and disrupting the coding sequence of dipeptidyl-peptidase 6 gene (DPP6). DPP6 resequencing identified significantly more rare variants-nonsense, frame-shift, and missense-in early-onset Alzheimer's disease (EOAD, p value = 0.03, OR = 2.21 95% CI 1.05-4.82) and frontotemporal dementia (FTD, p = 0.006, OR = 2.59, 95% CI 1.28-5.49) patient cohorts. DPP6 is a type II transmembrane protein with a highly structured extracellular domain and is mainly expressed in brain, where it binds to the potassium channel K(v)4.2 enhancing its expression, regulating its gating properties and controlling the dendritic excitability of hippocampal neurons. Using in vitro modeling, we showed that the missense variants found in patients destabilize DPP6 and reduce its membrane expression (p < 0.001 and p < 0.0001) leading to a loss of protein. Reduced DPP6 and/or K(v)4.2 expression was also detected in brain tissue of missense variant carriers. Loss of DPP6 is known to cause neuronal hyperexcitability and behavioral alterations in Dpp6-KO mice. Taken together, the results of our genomic, genetic, expression and modeling analyses, provided direct evidence supporting the involvement of DPP6 loss in dementia. We propose that loss of function variants have a higher penetrance and disease impact, whereas the missense variants have a variable risk contribution to disease that can vary from high to low penetrance. Our findings of DPP6, as novel gene in dementia, strengthen the involvement of neuronal hyperexcitability and alteration in the homeostasis of neuronal firing as a disease mechanism to further investigate

    TBK1 mutation spectrum in an extended European patient cohort with frontotemporal dementia and amyotrophic lateral sclerosis

    Get PDF
    We investigated the mutation spectrum of the TANK-Binding Kinase 1 (TBK1) gene and its associated phenotypic spectrum by exonic resequencing of TBK1 in a cohort of 2,538 patients with frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), or FTD plus ALS, ascertained within the European Early-Onset Dementia Consortium. We assessed pathogenicity of predicted protein-truncating mutations by measuring loss of RNA expression. Functional effect of in-frame amino acid deletions and missense mutations was further explored in vivo on protein level and in vitro by an NFκB-induced luciferase reporter assay and measuring phosphorylated TBK1. The protein-truncating mutations led to the loss of transcript through nonsense-mediated mRNA decay. For the in-frame amino acid deletions, we demonstrated loss of TBK1 or phosphorylated TBK1 protein. An important fraction of the missense mutations compromised NFκB activation indicating that at least some functions of TBK1 are lost. Although missense mutations were also present in controls, over three times more mutations affecting TBK1 functioning were found in the mutation fraction observed in patients only, suggesting high-risk alleles (P = 0.03). Total mutation frequency for confirmed TBK1 LoF mutations in the European cohort was 0.7%, with frequencies in the clinical subgroups of 0.4% in FTD, 1.3% in ALS, and 3.6% in FTD-ALS

    Loss of DPP6 in neurodegenerative dementia: a genetic player in the dysfunction of neuronal excitability

    Get PDF
    Emerging evidence suggested a converging mechanism in neurodegenerative brain diseases (NBD) involving early neuronal network dysfunctions and alterations in the homeostasis of neuronal fring as culprits of neurodegeneration. In this study, we used paired-end short-read and direct long-read whole genome sequencing to investigate an unresolved autosomal dominant dementia family signifcantly linked to 7q36. We identifed and validated a chromosomal inversion of ca. 4 Mb, segregating on the disease haplotype and disrupting the coding sequence of dipeptidyl-peptidase 6 gene (DPP6). DPP6 resequencing identifed signifcantly more rare variants—nonsense, frameshift, and missense—in early-onset Alzheimer’s disease (EOAD, p value=0.03, OR=2.21 95% CI 1.05–4.82) and frontotemporal dementia (FTD, p=0.006, OR=2.59, 95% CI 1.28–5.49) patient cohorts. DPP6 is a type II transmembrane protein with a highly structured extracellular domain and is mainly expressed in brain, where it binds to the potassium channel Kv4.2 enhancing its expression, regulating its gating properties and controlling the dendritic excitability of hippocampal neurons. Using in vitro modeling, we showed that the missense variants found in patients destabilize DPP6 and reduce its membrane expression (p<0.001 and p<0.0001) leading to a loss of protein. Reduced DPP6 and/or Kv4.2 expression was also detected in brain tissue of missense variant carriers. Loss of DPP6 is known to caus

    Sex and the G Protein–Coupled Estrogen Receptor Impact Vascular Stiffness

    No full text

    Impaired left-ventricular cardiac function in male GPR30-deficient mice

    No full text
    G-protein-coupled receptor 30 (GPR30) has been reported to act as a membrane-bound estrogen receptor that is involved in the mediation of non-genomic estradiol signalling. In this study, we demonstrated that male, but not female, GPR30-deficient mice suffer from impaired leftventricular cardiac function. Left ventricles from male mutant mice were enlarged. There were no malformations in the valves or outflow tract of the heart. Both the contractility and relaxation capacity of the left ventricle were reduced, leading to increased leftventricular end-diastolic pressure in GPR30-deficient mice. In conclusion, our data support a role for GPR30 in the gender-specific aspects of heart failure

    Topical Potassium Channel Blockage Improves Pharyngeal Collapsibility: A Translational, Placebo-Controlled Trial

    No full text
    Background: Potassium (Kþ) channel inhibition has been identified in animal models as a potential target to increase pharyngeal dilator muscle activity and to treat OSA. However, these findings have not yet been translated to humans. Research Question: Does a novel, potent, tandem of P domains in a weak inward rectifying Kþ channel (TWIK)-related acid-sensitive Kþ (TASK) 1/3 channel antagonist, BAY2586116, improve pharyngeal collapsibility in pigs and humans, and secondarily, what is the optimal dose and method of topical application? Study Design and Methods: In the preclinical study, pharyngeal muscle activity and upperairway collapsibility via transient negative pressure application was quantified in 13 anesthetized pigs during administration of placebo, 0.3mg, 3mg, and 30mg nasal drops of BAY2586116. In the clinical study, 12 people with OSA instrumented with polysomnography equipment, an epiglottic pressure catheter, pneumotachograph, and nasal mask to monitor sleep and breathing performed up to four detailed upper airway sleep physiology studies. Participants received BAY2586116 (160 mg) or placebo nasal spray before sleep via a double-masked, randomized, crossover design. Most participants also returned for three additional overnight visits: (1) nasal drops (160 mg), (2) half-dose nasal spray (80 mg), and (3) direct endoscopic application (160 mg). The upper-airway critical closing pressure (Pcrit) during sleep was quantified at each visit. Results: Consistent and sustained improvements in pharyngeal collapsibility to negative pressure were found with 3 and 30 mg of BAY2586116 vs placebo in pigs. Similarly, BAY2586116 improved pharyngeal collapsibility by an average of approximately 2 cm H2O vs placebo, regardless of topical application method and dose (P < .008, mixed model) in participants with OSA. Interpretation: Acute topical application of BAY2586116 improves upper-airway collapsibility in anesthetized pigs and sleeping humans with OSA. These novel physiologic findings highlight the therapeutic potential to target potassium channel mechanisms to treat OSAAmal M. Osman, Sutapa Mukherjee, Thomas J. Altree, Martina Delbeck, Doris Gehring, Michael Hahn, Tina Lang, Charles Xing, Thomas Muller, Gerrit Weimann, and Danny J. Ecker

    A lower X-gate in TASK channels traps inhibitors within the vestibule

    No full text
    TWIK-related acid-sensitive potassium (TASK) channels—members of the two pore domain potassium (K2P) channel family—are found in neurons1, cardiomyocytes2,3,4 and vascular smooth muscle cells5, where they are involved in the regulation of heart rate6, pulmonary artery tone5,7, sleep/wake cycles8 and responses to volatile anaesthetics8,9,10,11. K2P channels regulate the resting membrane potential, providing background K+ currents controlled by numerous physiological stimuli12,13,14,15. Unlike other K2P channels, TASK channels are able to bind inhibitors with high affinity, exceptional selectivity and very slow compound washout rates. As such, these channels are attractive drug targets, and TASK-1 inhibitors are currently in clinical trials for obstructive sleep apnoea and atrial fibrillation16. In general, potassium channels have an intramembrane vestibule with a selectivity filter situated above and a gate with four parallel helices located below; however, the K2P channels studied so far all lack a lower gate. Here we present the X-ray crystal structure of TASK-1, and show that it contains a lower gate—which we designate as an ‘X-gate’—created by interaction of the two crossed C-terminal M4 transmembrane helices at the vestibule entrance. This structure is formed by six residues (243VLRFMT248) that are essential for responses to volatile anaesthetics10, neurotransmitters13 and G-protein-coupled receptors13. Mutations within the X-gate and the surrounding regions markedly affect both the channel-open probability and the activation of the channel by anaesthetics. Structures of TASK-1 bound to two high-affinity inhibitors show that both compounds bind below the selectivity filter and are trapped in the vestibule by the X-gate, which explains their exceptionally low washout rates. The presence of the X-gate in TASK channels explains many aspects of their physiological and pharmacological behaviour, which will be beneficial for the future development and optimization of TASK modulators for the treatment of heart, lung and sleep disorders
    corecore