2,513 research outputs found
On the measurement of B(E2, 0+ -> 2+) using intermediate-energy Coulomb excitation
Coulomb excitation is a standard method used to extract quadrupole excitation
strengths of even-even nuclei. In typical analyses the reaction is assumed to
be one-step, Coulomb only, and is treated within a semi-classical model. In
this work, fully-quantal coupled-channel calculations are performed for three
test cases in order to determine the importance of multi-step effects, nuclear
contributions, feeding from other states and corrections to the semi-classical
approximation. We study the excitation of 30S, 58Ni and 78Kr on 197Au at ~ 50
AMeV. We find that nuclear effects may contribute more than 10% and that
feeding contributions can be larger than 15%. These corrections do not alter
significantly the published B(E2) values, however an additional theoretical
error of up to 13% should be added to the experimental uncertainty if the
semi-classical model is used. This theoretical error is reduced to less than 7%
when performing a quantal coupled-channel analysis.Comment: 9 pages, accepted for publication in J. Phys. G: Nucl. Phy
RBF neural net based classifier for the AIRIX accelerator fault diagnosis
The AIRIX facility is a high current linear accelerator (2-3.5kA) used for
flash-radiography at the CEA of Moronvilliers France. The general background of
this study is the diagnosis and the predictive maintenance of AIRIX. We will
present a tool for fault diagnosis and monitoring based on pattern recognition
using artificial neural network. Parameters extracted from the signals recorded
on each shot are used to define a vector to be classified. The principal
component analysis permits us to select the most pertinent information and
reduce the redundancy. A three layer Radial Basis Function (RBF) neural network
is used to classify the states of the accelerator. We initialize the network by
applying an unsupervised fuzzy technique to the training base. This allows us
to determine the number of clusters and real classes, which define the number
of cells on the hidden and output layers of the network. The weights between
the hidden and the output layers, realising the non-convex union of the
clusters, are determined by a least square method. Membership and ambiguity
rejection enable the network to learn unknown failures, and to monitor
accelerator operations to predict future failures. We will present the first
results obtained on the injector.Comment: 3 pages, 4 figures, LINAC'2000 conferenc
Some Aspects of New CDM Models and CDM Detection Methods
We briefly review some recent Cold Dark Matter (CDM) models. Our main focus
are charge symmetric models of WIMPs which are not the standard SUSY LSP's
(Lightest Supersymmetric Partners). We indicate which experiments are most
sensitive to certain aspects of the models. In particular we discuss the
manifestations of the new models in neutrino telescopes and other set-ups. We
also discuss some direct detection experiments and comment on measuring the
direction of recoil ions--which is correlated with the direction of the
incoming WIMP. This could yield daily variations providing along with the
annual modulation signatures for CDM.Comment: 14 page
Coupling and higher-order effects in the 12C(d,p)13C and 13C(p,d)12C reactions
Coupled channels calculations are performed for the 12C(d,p)13C and
13C(p,d)12C reactions between 7 and 60 MeV to study the effect of inelastic
couplings in transfer reactions. The effect of treating transfer beyond Born
approximation is also addressed. The coupling to the 12C 2+ state is found to
change the peak cross-section by up to 15 %. Effects beyond Born approximation
lead to a significant renormalization of the cross-sections, between 5 and 10 %
for deuteron energies above 10 MeV, and larger than 10 % for lower energies. We
also performed calculations including the remnant term in the transfer
operator, which has a small impact on the 12C(d,p)13C(g.s.) and
13C(p,d)12C(g.s.) reactions. Above 30 MeV deuteron energy, the effect of the
remnant term is larger than 10 % for the 12C(d,p)13C(3.09 MeV) reaction and is
found to increase with decreasing neutron separation energy for the 3.09 MeV
state of 13C. This is of importance for transfer reactions with weakly bound
nuclei.Comment: 7 pages, 7 figures, submitted to Phys. Rev.
(De)Bonding with embryos: The emotional choreographies of Portuguese IVF patients
In this article we develop the new concept of emotional choreography to describe how patients bond, debond and/or rebond with their embryos created in vitro using assisted reproductive technologies (ART). Using this concept, we explore how the patients' management of their own emotions intertwines with political, scientific, and religious factors. Our analysis relies on and further advances Thompson's concepts of ethical and ontological “choreography”. It is through these forms of choreography that complex contemporary biomedical issues with high political, ethical, and scientific stakes are negotiated, and through which different actors, entities, practices, roles, and norms undergo mutual constitution, reinforcement and (re)definition. Our article draws on the analysis of 69 in-depth interviews and the results of an online survey with 85 respondents.info:eu-repo/semantics/publishedVersio
Bounding wide composite vector resonances at the LHC
In composite Higgs models (CHMs), electroweak precision data generically push
colourless composite vector resonances to a regime where they dominantly decay
into pairs of light top partners. This greatly attenuates their traces in
canonical collider searches, tailored for narrow resonances promptly decaying
into Standard Model final states. By reinterpreting the CMS same-sign dilepton
(SS2) analysis at the Large Hadron Collider (LHC), originally designed to
search for top partners with electric charge , we demonstrate its
significant coverage over this kinematical regime. We also show the reach of
the 13 TeV run of the LHC, with various integrated luminosity options, for a
possible upgrade of the SS2 search. The top sector of CHMs is found to be
more fine-tuned in the presence of colourless composite resonances in the few
TeV range.Comment: 9 pages, 5 figures. Minor corrections for publication in JHE
Proof of the Double Bubble Conjecture in R^n
The least-area hypersurface enclosing and separating two given volumes in R^n
is the standard double bubble.Comment: 20 pages, 22 figure
Extrapolation of neutron-rich isotope cross-sections from projectile fragmentation
Using the measured fragmentation cross sections produced from the 48Ca and
64Ni beams at 140 MeV per nucleon on 9Be and 181Ta targets, we find that the
cross sections of unmeasured neutron rich nuclei can be extrapolated using a
systematic trend involving the average binding energy. The extrapolated
cross-sections will be very useful in planning experiments with neutron rich
isotopes produced from projectile fragmentation. The proposed method is general
and could be applied to other fragmentation systems including those used in
other radioactive ion beam facilities.Comment: accepted for publication in Europhysics Letter
- …