405 research outputs found

    A novel approach to dream content analysis reveals links between learning-related dream incorporation and cognitive abilities

    Get PDF
    © 2018 Fogel, Ray, Sergeeva, De Koninck and Owen. Can dreams reveal insight into our cognitive abilities and aptitudes (i.e., human intelligence )? The relationship between dream production and trait-like cognitive abilities is the foundation of several long-standing theories on the neurocognitive and cognitive-psychological basis of dreaming. However, direct experimental evidence is sparse and remains contentious. On the other hand, recent research has provided compelling evidence demonstrating a link between dream content and new learning, suggesting that dreams reflect memory processing during sleep. It remains to be investigated whether the extent of learning-related dream incorporation (i.e., the semantic similarity between waking experiences and dream content) is related to inter-individual differences in cognitive abilities. The relationship between pre-post sleep memory performance improvements and learning-related dream incorporation was investigated (N = 24) to determine if this relationship could be explained by inter-individual differences in intellectual abilities (e.g., reasoning, short term memory (STM), and verbal abilities). The extent of dream incorporation using a novel and objective method of dream content analysis, employed a computational linguistic approach to measure the semantic relatedness between verbal reports describing the experience on a spatial (e.g., maze navigation) or a motor memory task (e.g., tennis simulator) with subsequent hypnagogic reverie dream reports and waking daydream reports, obtained during a daytime nap opportunity. Consistent with previous studies, the extent to which something new was learned was related (r = 0.47) to how richly these novel experiences were incorporated into the content of dreams. This was significant for early (the first 4 dream reports) but not late dreams (the last 4 dream reports). Notably, here, we show for the first time that the extent of this incorporation for early dreams was related (r = 0.41) to inter-individual differences in reasoning abilities. On the other hand, late dream incorporation was related (r = 0.46) to inter-individual differences in verbal abilities. There was no relationship between performance improvements and intellectual abilities, and thus, inter-individual differences in cognitive abilities did not mediate the relationship between performance improvements and dream incorporation; suggesting a direct relationship between reasoning abilities and dream incorporation. This study provides the first evidence that learning-related dream production is related to inter-individual differences in cognitive abilities

    Discovering Business Area Effects to Process Mining Analysis Using Clustering and Influence Analysis

    Full text link
    A common challenge for improving business processes in large organizations is that business people in charge of the operations are lacking a fact-based understanding of the execution details, process variants, and exceptions taking place in business operations. While existing process mining methodologies can discover these details based on event logs, it is challenging to communicate the process mining findings to business people. In this paper, we present a novel methodology for discovering business areas that have a significant effect on the process execution details. Our method uses clustering to group similar cases based on process flow characteristics and then influence analysis for detecting those business areas that correlate most with the discovered clusters. Our analysis serves as a bridge between BPM people and business, people facilitating the knowledge sharing between these groups. We also present an example analysis based on publicly available real-life purchase order process data.Comment: 12 pages. Paper accepted in 23rd International Conference on Business Information Systems (BIS 2020) to be published in a proceedings edition of the Lecture Notes in Business Information Processin

    On the Portability of Prolog Applications

    Get PDF
    The non-portability of Prolog programs is widely considered one of the main problems facing Prolog programmers. Although since 1995, the core of the language is covered by the ISO standard 13211-1, this standard has not been sufficient to support large Prolog applications. As an approach to address this problem, since 2007, YAP and SWI-Prolog have established a basic compatibility framework. The aim of the framework is running the same code on Edinburgh-based Prolog systems rather than having to migrate an application. This article describes the implementation and evaluates this framework by studying how it can be used on a number of libraries and an important application. © 2011 Springer-Verlag

    Adaptive Movement Compensation for In Vivo Imaging of Fast Cellular Dynamics within a Moving Tissue

    Get PDF
    In vivo non-linear optical microscopy has been essential to advance our knowledge of how intact biological systems work. It has been particularly enabling to decipher fast spatiotemporal cellular dynamics in neural networks. The power of the technique stems from its optical sectioning capability that in turn also limits its application to essentially immobile tissue. Only tissue not affected by movement or in which movement can be physically constrained can be imaged fast enough to conduct functional studies at high temporal resolution. Here, we show dynamic two-photon Ca2+ imaging in the spinal cord of a living rat at millisecond time scale, free of motion artifacts using an optical stabilization system. We describe a fast, non-contact adaptive movement compensation approach, applicable to rough and weakly reflective surfaces, allowing real-time functional imaging from intrinsically moving tissue in live animals. The strategy involves enslaving the position of the microscope objective to that of the tissue surface in real-time through optical monitoring and a closed feedback loop. The performance of the system allows for efficient image locking even in conditions of random or irregular movements

    Differential chloride homeostasis in the spinal dorsal horn locally shapes synaptic metaplasticity and modality-specific sensitization

    Get PDF
    Inhibition in spinal nociceptive pathways is weaker and more labile in lamina I —where thermal input is primarily processed— than in lamina II that encodes predominantly high threshold mechanical input. This explains why noxious thermal input makes spinal circuits prone to catastrophic sensitization

    Co3O4 Nanocrystals on Graphene as a Synergistic Catalyst for Oxygen Reduction Reaction

    Full text link
    Catalysts for oxygen reduction and evolution reactions are at the heart of key renewable energy technologies including fuel cells and water splitting. Despite tremendous efforts, developing oxygen electrode catalysts with high activity at low costs remains a grand challenge. Here, we report a hybrid material of Co3O4 nanocrystals grown on reduced graphene oxide (GO) as a high-performance bi-functional catalyst for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). While Co3O4 or graphene oxide alone has little catalytic activity, their hybrid exhibits an unexpected, surprisingly high ORR activity that is further enhanced by nitrogen-doping of graphene. The Co3O4/N-doped graphene hybrid exhibits similar catalytic activity but superior stability to Pt in alkaline solutions. The same hybrid is also highly active for OER, making it a high performance non-precious metal based bi-catalyst for both ORR and OER. The unusual catalytic activity arises from synergetic chemical coupling effects between Co3O4 and graphene.Comment: published in Nature Material

    Conformance checking using activity and trace embeddings

    Get PDF
    Conformance checking describes process mining techniques used to compare an event log and a corresponding process model. In this paper, we propose an entirely new approach to conformance checking based on neural network-based embeddings. These embeddings are vector representations of every activity/task present in the model and log, obtained via act2vec, a Word2vec based model. Our novel conformance checking approach applies the Word Mover’s Distance to the activity embeddings of traces in order to measure fitness and precision. In addition, we investigate a more efficiently calculated lower bound of the former metric, i.e. the Iterative Constrained Transfers measure. An alternative method using trace2vec, a Doc2vec based model, to train and compare vector representations of the process instances themselves is also introduced. These methods are tested in different settings and compared to other conformance checking techniques, showing promising results

    A Dynamic Model of Interactions of Ca^(2+), Calmodulin, and Catalytic Subunits of Ca^(2+)/Calmodulin-Dependent Protein Kinase II

    Get PDF
    During the acquisition of memories, influx of Ca^(2+) into the postsynaptic spine through the pores of activated N-methyl-D-aspartate-type glutamate receptors triggers processes that change the strength of excitatory synapses. The pattern of Ca^(2+) influx during the first few seconds of activity is interpreted within the Ca^(2+)-dependent signaling network such that synaptic strength is eventually either potentiated or depressed. Many of the critical signaling enzymes that control synaptic plasticity, including Ca^(2+)/calmodulin-dependent protein kinase II (CaMKII), are regulated by calmodulin, a small protein that can bind up to 4 Ca^(2+) ions. As a first step toward clarifying how the Ca^(2+)-signaling network decides between potentiation or depression, we have created a kinetic model of the interactions of Ca^(2+), calmodulin, and CaMKII that represents our best understanding of the dynamics of these interactions under conditions that resemble those in a postsynaptic spine. We constrained parameters of the model from data in the literature, or from our own measurements, and then predicted time courses of activation and autophosphorylation of CaMKII under a variety of conditions. Simulations showed that species of calmodulin with fewer than four bound Ca^(2+) play a significant role in activation of CaMKII in the physiological regime, supporting the notion that processing ofCa^(2+) signals in a spine involves competition among target enzymes for binding to unsaturated species of CaM in an environment in which the concentration of Ca^(2+) is fluctuating rapidly. Indeed, we showed that dependence of activation on the frequency of Ca^(2+) transients arises from the kinetics of interaction of fluctuating Ca^(2+) with calmodulin/CaMKII complexes. We used parameter sensitivity analysis to identify which parameters will be most beneficial to measure more carefully to improve the accuracy of predictions. This model provides a quantitative base from which to build more complex dynamic models of postsynaptic signal transduction during learning

    Efficacy of Synaptic Inhibition Depends on Multiple, Dynamically Interacting Mechanisms Implicated in Chloride Homeostasis

    Get PDF
    Chloride homeostasis is a critical determinant of the strength and robustness of inhibition mediated by GABAA receptors (GABAARs). The impact of changes in steady state Cl− gradient is relatively straightforward to understand, but how dynamic interplay between Cl− influx, diffusion, extrusion and interaction with other ion species affects synaptic signaling remains uncertain. Here we used electrodiffusion modeling to investigate the nonlinear interactions between these processes. Results demonstrate that diffusion is crucial for redistributing intracellular Cl− load on a fast time scale, whereas Cl−extrusion controls steady state levels. Interaction between diffusion and extrusion can result in a somato-dendritic Cl− gradient even when KCC2 is distributed uniformly across the cell. Reducing KCC2 activity led to decreased efficacy of GABAAR-mediated inhibition, but increasing GABAAR input failed to fully compensate for this form of disinhibition because of activity-dependent accumulation of Cl−. Furthermore, if spiking persisted despite the presence of GABAAR input, Cl− accumulation became accelerated because of the large Cl− driving force that occurs during spikes. The resulting positive feedback loop caused catastrophic failure of inhibition. Simulations also revealed other feedback loops, such as competition between Cl− and pH regulation. Several model predictions were tested and confirmed by [Cl−]i imaging experiments. Our study has thus uncovered how Cl− regulation depends on a multiplicity of dynamically interacting mechanisms. Furthermore, the model revealed that enhancing KCC2 activity beyond normal levels did not negatively impact firing frequency or cause overt extracellular K− accumulation, demonstrating that enhancing KCC2 activity is a valid strategy for therapeutic intervention

    The facilitating factors and barriers encountered in the adoption of a humanized birth care approach in a highly specialized university affiliated hospital

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Considering the fact that a significant proportion of high-risk pregnancies are currently referred to tertiary level hospitals; and that a large proportion of low obstetric risk women still seek care in these hospitals, it is important to explore the factors that influence the childbirth experience in these hospitals, particularly, the concept of humanized birth care.</p> <p>The aim of this study was to explore the organizational and cultural factors, which act as barriers or facilitators in the provision of humanized obstetrical care in a highly specialized, university-affiliated hospital in Quebec province, in Canada.</p> <p>Methods</p> <p>A single case study design was chosen. The study sample included 17 professionals and administrators from different disciplines, and 157 women who gave birth in the hospital during the study. The data was collected through semi-structured interviews, field notes, participant observations, a self-administered questionnaire, documents, and archives. Both descriptive and qualitative deductive content analyses were performed and ethical considerations were respected.</p> <p>Results</p> <p>Both external and internal dimensions of a highly specialized hospital can facilitate or be a barrier to the humanization of birth care practices in such institutions, whether independently, or altogether. The greatest facilitating factors found were: caring and family- centered model of care, professionals' and administrators' ambient for the provision of humanized birth care besides the medical interventional care which is tailored to improve safety, assurance, and comfort for women and their children, facilities to provide a pain-free birth, companionship and visiting rules, dealing with the patients' spiritual and religious beliefs. The most cited barriers were: the shortage of health care professionals, the lack of sufficient communication among the professionals, the stakeholders' desire for specialization rather than humanization, over estimation of medical performance, finally the training environment of the hospital leading to the presence of too many health care professionals, and consequently, a lack of privacy and continuity of care.</p> <p>Conclusion</p> <p>The argument of medical intervention and technology at birth being an opposing factor to the humanization of birth was not seen to be an issue in the studied highly specialized university affiliated hospital.</p
    • …
    corecore