5,885 research outputs found

    Charged and superconducting vortices in dense quark matter

    Full text link
    Quark matter at astrophysical densities may contain stable vortices due to the spontaneous breaking of hypercharge symmetry by kaon condensation. We argue that these vortices could be both charged and electrically superconducting. Current carrying loops (vortons) could be long lived and play a role in the magnetic and transport properties of this matter. We provide a scenario for vorton formation in protoneutron stars.Comment: Replaced with the published version. A typographical error in Eq. 2 is correcte

    Sum rules and three point functions

    Full text link
    Sum rules constraining the R-current spectral densities are derived holographically for the case of D3-branes, M2-branes and M5-branes all at finite chemical potentials. In each of the cases the sum rule relates a certain integral of the spectral density over the frequency to terms which depend both on long distance physics, hydrodynamics and short distance physics of the theory. The terms which which depend on the short distance physics result from the presence of certain chiral primaries in the OPE of two R-currents which are turned on at finite chemical potential. Since these sum rules contain information of the OPE they provide an alternate method to obtain the structure constants of the two R-currents and the chiral primary. As a consistency check we show that the 3 point function derived from the sum rule precisely matches with that obtained using Witten diagrams.Comment: 41 page

    Shear sum rules at finite chemical potential

    Full text link
    We derive sum rules which constrain the spectral density corresponding to the retarded propagator of the T_{xy} component of the stress tensor for three gravitational duals. The shear sum rule is obtained for the gravitational dual of the N=4 Yang-Mills, theory of the M2-branes and M5-branes all at finite chemical potential. We show that at finite chemical potential there are additional terms in the sum rule which involve the chemical potential. These modifications are shown to be due to the presence of scalars in the operator product expansion of the stress tensor which have non-trivial vacuum expectation values at finite chemical potential.Comment: The proof for the absence of branch cuts is corrected.Results unchange

    Higher spin fermions in the BTZ black hole

    Full text link
    Recently it has been shown that the wave equations of bosonic higher spin fields in the BTZ background can be solved exactly. In this work we extend this analysis to fermionic higher spin fields. We solve the wave equations for arbitrary half-integer spin fields in the BTZ black hole background and obtain exact expressions for their quasinormal modes. These quasinormal modes are shown to agree precisely with the poles of the corresponding two point function in the dual conformal field theory as predicted by the AdS/CFT correspondence. We also obtain an expression for the 1-loop determinant in terms of the quasinormal modes and show it agrees with that obtained by integrating the heat kernel found by group theoretic methods.Comment: 29 page

    Distilling Missing Modality Knowledge from Ultrasound for Endometriosis Diagnosis with Magnetic Resonance Images

    Full text link
    Endometriosis is a common chronic gynecological disorder that has many characteristics, including the pouch of Douglas (POD) obliteration, which can be diagnosed using Transvaginal gynecological ultrasound (TVUS) scans and magnetic resonance imaging (MRI). TVUS and MRI are complementary non-invasive endometriosis diagnosis imaging techniques, but patients are usually not scanned using both modalities and, it is generally more challenging to detect POD obliteration from MRI than TVUS. To mitigate this classification imbalance, we propose in this paper a knowledge distillation training algorithm to improve the POD obliteration detection from MRI by leveraging the detection results from unpaired TVUS data. More specifically, our algorithm pre-trains a teacher model to detect POD obliteration from TVUS data, and it also pre-trains a student model with 3D masked auto-encoder using a large amount of unlabelled pelvic 3D MRI volumes. Next, we distill the knowledge from the teacher TVUS POD obliteration detector to train the student MRI model by minimizing a regression loss that approximates the output of the student to the teacher using unpaired TVUS and MRI data. Experimental results on our endometriosis dataset containing TVUS and MRI data demonstrate the effectiveness of our method to improve the POD detection accuracy from MRI.Comment: This paper is accepted by 2023 IEEE 20th International Symposium on Biomedical Imaging(ISBI 2023

    Higher spin quasinormal modes and one-loop determinants in the BTZ black hole

    Full text link
    We solve the wave equations of arbitrary integer spin fields in the BTZ black hole background and obtain exact expressions for their quasinormal modes. We show that these quasinormal modes precisely agree with the location of the poles of the corresponding two point function in the dual conformal field theory as predicted by the AdS/CFT correspondence. We then use these quasinormal modes to construct the one-loop determinant of the higher spin field in the thermal BTZ background. This is shown to agree with that obtained from the corresponding heat kernel constructed recently by group theoretic methods.Comment: 47 page

    String Theory and Quantum Chromodynamics

    Full text link
    I review recent progress on the connection between string theory and quantum chromodynamics in the context of the gauge/gravity duality. Emphasis is placed on conciseness and conceptual aspects rather than on technical details. Topics covered include the large-Nc limit of gauge theories, the gravitational description of gauge theory thermodynamics and hydrodynamics, and confinement/deconfinement thermal phase transitions.Comment: 38 pages, 24 figures. Lectures given at the RTN Winter School on "Strings, Supergravity and Gauge Theories" at CERN on January 15-19, 200

    Hydrodynamics of R-charged D1-branes

    Full text link
    We study the hydrodynamic properties of strongly coupled SU(N)SU(N) Yang-Mills theory of the D1-brane at finite temperature and at a non-zero density of R-charge in the framework of gauge/gravity duality. The gravity dual description involves a charged black hole solution of an Einstein-Maxwell-dilaton system in 3 dimensions which is obtained by a consistent truncation of the spinning D1-brane in 10 dimensions. We evaluate thermal and electrical conductivity as well as the bulk viscosity as a function of the chemical potential conjugate to the R-charges of the D1-brane. We show that the ratio of bulk viscosity to entropy density is independent of the chemical potential and is equal to 1/4π1/4\pi. The thermal conductivity and bulk viscosity obey a relationship similar to the Wiedemann-Franz law. We show that at the boundary of thermodynamic stability, the charge diffusion mode becomes unstable and the transport coefficients exhibit critical behaviour. Our method for evaluating the transport coefficients relies on expressing the second order differential equations in terms of a first order equation which dictates the radial evolution of the transport coefficient. The radial evolution equations can be solved exactly for the transport coefficients of our interest. We observe that transport coefficients of the D1-brane theory are related to that of the M2-brane by an overall proportionality constant which sets the dimensions.Comment: 57 pages, 12 figure

    Repurposing Albendazole: new potential as a chemotherapeutic agent with preferential activity against HPV-negative head and neck squamous cell cancer.

    Get PDF
    Albendazole is an anti-helminthic drug that has been shown to exhibit anti-cancer properties, however its activity in head and neck squamous cell cancer (HNSCC) was unknown. Using a series of in vitro assays, we assessed the ability of albendazole to inhibit proliferation in 20 HNSCC cell lines across a range of albendazole doses (1 nM-10 μM). Cell lines that responded to treatment were further examined for cell death, inhibition of migration and cell cycle arrest. Thirteen of fourteen human papillomavirus-negative HNSCC cell lines responded to albendazole, with an average IC50 of 152 nM. In contrast, only 3 of 6 human papillomavirus-positive HNSCC cell lines responded. Albendazole treatment resulted in apoptosis, inhibition of cell migration, cell cycle arrest in the G2/M phase and altered tubulin distribution. Normal control cells were not measurably affected by any dose tested. This study indicates that albendazole acts to inhibit the proliferation of human papillomavirus-negative HNSCC cell lines and thus warrants further study as a potential chemotherapeutic agent for patients suffering from head and neck cancer

    Relaxed Softmax for learning from Positive and Unlabeled data

    Full text link
    In recent years, the softmax model and its fast approximations have become the de-facto loss functions for deep neural networks when dealing with multi-class prediction. This loss has been extended to language modeling and recommendation, two fields that fall into the framework of learning from Positive and Unlabeled data. In this paper, we stress the different drawbacks of the current family of softmax losses and sampling schemes when applied in a Positive and Unlabeled learning setup. We propose both a Relaxed Softmax loss (RS) and a new negative sampling scheme based on Boltzmann formulation. We show that the new training objective is better suited for the tasks of density estimation, item similarity and next-event prediction by driving uplifts in performance on textual and recommendation datasets against classical softmax.Comment: 9 pages, 5 figures, 2 tables, published at RecSys 201
    corecore