14,463 research outputs found

    Galois Unitaries, Mutually Unbiased Bases, and MUB-balanced states

    Full text link
    A Galois unitary is a generalization of the notion of anti-unitary operators. They act only on those vectors in Hilbert space whose entries belong to some chosen number field. For Mutually Unbiased Bases the relevant number field is a cyclotomic field. By including Galois unitaries we are able to remove a mismatch between the finite projective group acting on the bases on the one hand, and the set of those permutations of the bases that can be implemented as transformations in Hilbert space on the other hand. In particular we show that there exist transformations that cycle through all the bases in every dimension which is an odd power of an odd prime. (For even primes unitary MUB-cyclers exist.) These transformations have eigenvectors, which are MUB-balanced states (i.e. rotationally symmetric states in the original terminology of Wootters and Sussman) if and only if d = 3 modulo 4. We conjecture that this construction yields all such states in odd prime power dimension.Comment: 32 pages, 2 figures, AMS Latex. Version 2: minor improvements plus a few additional reference

    Nuclear quantum effects in water exchange around lithium and fluoride ions

    Full text link
    We employ classical and ring polymer molecular dynamics simulations to study the effect of nuclear quantum fluctuations on the structure and the water exchange dynamics of aqueous solutions of lithium and fluoride ions. While we obtain reasonably good agreement with experimental data for solutions of lithium by augmenting the Coulombic interactions between the ion and the water molecules with a standard Lennard-Jones ion-oxygen potential, the same is not true for solutions of fluoride, for which we find that a potential with a softer repulsive wall gives much better agreement. A small degree of destabilization of the first hydration shell is found in quantum simulations of both ions when compared with classical simulations, with the shell becoming less sharply defined and the mean residence time of the water molecules in the shell decreasing. In line with these modest differences, we find that the mechanisms of the exchange processes are unaffected by quantization, so a classical description of these reactions gives qualitatively correct and quantitatively reasonable results. We also find that the quantum effects in solutions of lithium are larger than in solutions of fluoride. This is partly due to the stronger interaction of lithium with water molecules, partly due to the lighter mass of lithium, and partly due to competing quantum effects in the hydration of fluoride, which are absent in the hydration of lithium.Comment: 12 pages, 8 figure

    Pairing effect on the giant dipole resonance width at low temperature

    Full text link
    The width of the giant dipole resonance (GDR) at finite temperature T in Sn-120 is calculated within the Phonon Damping Model including the neutron thermal pairing gap determined from the modified BCS theory. It is shown that the effect of thermal pairing causes a smaller GDR width at T below 2 MeV as compared to the one obtained neglecting pairing. This improves significantly the agreement between theory and experiment including the most recent data point at T = 1 MeV.Comment: 8 pages, 5 figures to be published in Physical Review

    An Efficient Method for GPS Multipath Mitigation Using the Teager-Kaiser-Operator-based MEDLL

    Get PDF
    An efficient method for GPS multipath mitigation is proposed. The motivation for this proposed method is to integrate the Teager-Kaiser Operator (TKO) with the Multipath Estimating Delay Lock Loop (MEDLL) module to mitigate the GPS multipath efficiently. The general implementation process of the proposed method is that we first utilize the TKO to operate on the received signal’s Auto-Correlation Function (ACF) to get an initial estimate of the multipaths. Then we transfer the initial estimated results to the MEDLL module for a further estimation. Finally, with a few iterations which are less than those of the original MEDLL algorithm, we can get a more accurate estimate of the Line-Of-Sight (LOS) signal, and thus the goal of the GPS multipath mitigation is achieved. The simulation results show that compared to the original MEDLL algorithm, the proposed method can reduce the computation load and the hardware and/or software consumption of the MEDLL module, meanwhile, without decreasing the algorithm accuracy

    Implications of bank ownership for the credit channel of monetary policy transmission: Evidence from India

    Get PDF
    Many developing and emerging markets have high degrees of state bank ownership. In addition, the recent global financial crisis has led to significant state ownership of banking assets in developed countries such as the United Kingdom. These observations beg the question of whether the effectiveness of monetary policy through a lending channel differs across banks with different ownerships. In this paper, using bank-level data from India, we examine this issue and also test whether the reaction of different types of banks (i.e., private, state and foreign) to monetary policy changes is different in easy and tight policy regimes. Our results suggest that there are considerable differences in the reactions of different types of banks to monetary policy initiatives of the central bank and the bank lending channel of monetary policy might be much more effective in a tight money period than in an easy money period. We also find differences in impact of monetary policy changes on less risky short term and more risky medium term lending We discuss the policy implications of the findings. Our results from India are preliminary and further studies are needed to see whether our findings can be generalized to emerging economies or developing countries in general.bank ownership; credit channel of monetary policy; lending; monetary policy regimes, India.

    Ultra-high sensitivity magnetic field and magnetization measurements with an atomic magnetometer

    Full text link
    We describe an ultra-sensitive atomic magnetometer using optically-pumped potassium atoms operating in spin-exchange relaxation free (SERF) regime. We demonstrate magnetic field sensitivity of 160 aT/Hz1/2^{1/2} in a gradiometer arrangement with a measurement volume of 0.45 cm3^3 and energy resolution per unit time of 4444 \hbar. As an example of a new application enabled by such a magnetometer we describe measurements of weak remnant rock magnetization as a function of temperature with a sensitivity on the order of 1010^{-10} emu/cm3^3/Hz1/2^{1/2} and temperatures up to 420^\circC

    Vacancy supersolid of hard-core bosons on the square lattice

    Full text link
    The ground state of hard-core bosons on the square lattice with nearest and next-nearest neighbor repulsion is studied by Quantum Monte Carlo simulations. A supersolid phase with vacancy condensation and 'star' diagonal ordering is found for filling less than a quarter. At fillings above one quarter, a supersolid phase exists between the star and the stripe crystal at half-filling. No supersolid phase occurs above quarter-filling, if the ground state at half-filling is either a checkerboard crystal or a superfluid. No commensurate supersolid phase is observed.Comment: Replaced with published versio
    corecore