10 research outputs found

    Comparison of three multiplex PCR assays for the detection of respiratory viral infections: evaluation of xTAG respiratory virus panel fast assay, RespiFinder 19 assay and RespiFinder SMART 22 assay

    No full text
    <p>Abstract</p> <p>Background</p> <p>A broad spectrum of pathogens is causative for respiratory tract infections, but symptoms are mostly similar. Therefore, the identification of the causative viruses and bacteria is only feasible using multiplex PCR or several monoplex PCR tests in parallel.</p> <p>Methods</p> <p>The analytical sensitivity of three multiplex PCR assays, RespiFinder-19, RespiFinder-SMART-22 and xTAG-Respiratory-Virus-Panel-Fast-Assay (RVP), were compared to monoplex real-time PCR with quantified standardized control material. All assays include the most common respiratory pathogens.</p> <p>Results</p> <p>To compare the analytical sensitivity of the multiplex assays, samples were inoculated with 13 different quantified viruses in the range of 10<sup>1</sup> to 10<sup>5</sup> copies/ml. Concordant results were received for rhinovirus, whereas the RVP detected influenzavirus, RSV and hMPV more frequently in low concentrations. The RespiFinder-19 and the RespiFinder-SMART-22 showed a higher analytical sensitivity for adenoviruses and coronaviruses, whereas the RVP was incapable to detect adenovirus and coronavirus in concentrations of 10<sup>4</sup> copies/ml. The RespiFinder-19 and RespiFinder-SMART-22A did not detect influenzaviruses (10<sup>4</sup> copies/ml) and RSV (10<sup>3</sup> copies/ml). The detection of all 13 viruses in one sample was only achieved using monoplex PCR. To analyze possible competitive amplification reactions between the different viruses, samples were further inoculated with only 4 different viruses in one sample. Compared to the detection of 13 viruses in parallel, only a few differences were found.</p> <p>The incidence of respiratory viruses was compared in tracheal secretion (TS) samples (n = 100) of mechanically ventilated patients in winter (n = 50) and summer (n = 50). In winter, respiratory viruses were detected in 32 TS samples (64%) by RespiFinder-19, whereas the detection rate with RVP was only 22%. The most frequent viruses were adenovirus (32%) and PIV-2 (20%). Multiple infections were detected in 16 TS samples (32%) by RespiFinder-19. Fewer infections were found in summer (RespiFinder-19: 20%; RVP: 6%). All positive results were verified using monoplex PCR.</p> <p>Conclusions</p> <p>Multiplex PCR tests have a broad spectrum of pathogens to test at a time. Analysis of multiple inoculated samples revealed a different focus of the detected virus types by the three assays. Analysis of clinical samples showed a high concordance of detected viruses by the RespiFinder-19 compared to monoplex tests.</p

    Calcification in dermal fibroblasts from a patient with GGCX syndrome accompanied by upregulation of osteogenic molecules

    Get PDF
    Gamma-glutamyl carboxylase (GGCX) gene mutation causes GGCX syndrome (OMIM: 137167), which is characterized by pseudoxanthoma elasticum (PXE)-like symptoms and coagulation impairment. Here, we present a 55-year-old male with a novel homozygous deletion mutation, c.2,221delT, p.S741LfsX100, in the GGCX gene. Histopathological examination revealed calcium deposits in elastic fibers and vessel walls, and collagen accumulation in the mid-dermis. Studies of dermal fibroblasts from the patient (GGCX dermal fibroblasts) demonstrated that the mutated GGCX protein was larger, but its expression level and intracellular distribution were indistinguishable from those of the wild-type GGCX protein. Immunostaining and an enzyme-linked immunosorbent assay showed an increase in undercarboxylated matrix gamma-carboxyglutamic acid protein (ucMGP), a representative substrate of GGCX and a potent calcification inhibitor, indicating that mutated GGCX was enzymatically inactive. Under osteogenic conditions, calcium deposition was exclusively observed in GGCX dermal fibroblasts. Furthermore, GGCX dermal fibroblast cultures contained 23-and 7.7-fold more alkaline phosphatase (ALP)-positive cells than normal dermal fibroblast cultures (n = 3), without and with osteogenic induction, respectively. Expression and activity of ALP were higher in GGCX dermal fibroblasts than in normal dermal fibroblasts upon osteogenic induction. mRNA levels of other osteogenic markers were also higher in GGCX dermal fibroblasts than in normal dermal fibroblasts, which including bone morphogenetic protein 6, runt-related transcription factor 2, and periostin (POSTN) without osteogenic induction; and osterix, collagen type I alpha 2, and POSTN with osteogenic induction. Together, these data indicate that GGCX dermal fibroblasts trans-differentiate into the osteogenic lineage. This study proposes another mechanism underlying aberrant calcification in patients with GGCX syndrome

    Rhinoviruses

    No full text
    Picornaviruses, which include the human rhinoviruses (HRVs) and enteroviruses (EVs), are the most frequent cause of acute human illness worldwide. HRVs are the most prevalent cause of acute respiratory tract illnesses (ARIs) which usually commence in the upper respiratory tract (URT). ARIs are the leading cause of morbidity in children under 5 years and occur in all seasons. ARIs linked to HRV infections are associated with excessive and perhaps inappropriate antibiotic prescribing and with significant direct and indirect healthcare expenditure. ARI incidence is highest in the first 2 years of life, with up to thirteen episodes per year including up to six positive for an HRV, and it is not uncommon to average one infection per child-month

    Coronaviruses

    No full text
    corecore