350 research outputs found

    The Tip of the Red Giant Branch Distance to the Large Magellanic Cloud

    Get PDF
    We present the I-band luminosity function of the red giant branch stars in the Large Magellanic Cloud (LMC) using the data from the Magellanic Clouds Photometric Survey (Zaritsky, Harris & Thompson, 1997). Selecting stars in uncrowded, low-extinction regions, a discontinuity in the luminosity function is observed at I_0 = 14.54 mag. Identifying this feature with the tip of the red giant branch (TRGB), and adopting an absolute TRGB magnitude of -4.05 +- 0.04 mag based on the calibration of Lee, Freedman & Madore (1993), we obtain a distance modulus of 18.59 +- 0.09 (random) +- 0.16 (systematic) mag. If the theoretical TRGB calibration provided by Cassisi & Salaris (1997) is adopted instead, the derived distance would be 4% greater. The LMC distance modulus reported here, 18.59 +- 0.09, is larger by 0.09 mag (1-sigma) than the value that is most commonly used in the extragalactic distance scale calibrated by the period-luminosity relation of the Cepheid variable stars. Our TRGB distance modulus agrees with several RR Lyrae distances to the LMC based on HIPPARCOS parallaxes. Finally, we note that using the same MCPS data, we obtain a distance modulus of 18.29 +- 0.03 mag using the red clump method, which is shorter by 0.3 mag compared to the TRGB estimate.Comment: 19 pages, 5 figure

    An Adaptive Optics Survey of Stellar Variability at the Galactic Center

    Get PDF
    We present a 11.5\approx 11.5 year adaptive optics (AO) study of stellar variability and search for eclipsing binaries in the central 0.4\sim 0.4 pc (10\sim 10'') of the Milky Way nuclear star cluster. We measure the photometry of 563 stars using the Keck II NIRC2 imager (KK'-band, λ0=2.124 μm\lambda_0 = 2.124 \text{ } \mu \text{m}). We achieve a photometric uncertainty floor of ΔmK0.03\Delta m_{K'} \sim 0.03 (3%\approx 3\%), comparable to the highest precision achieved in other AO studies. Approximately half of our sample (50±2%50 \pm 2 \%) shows variability. 52±5%52 \pm 5\% of known early-type young stars and 43±4%43 \pm 4 \% of known late-type giants are variable. These variability fractions are higher than those of other young, massive star populations or late-type giants in globular clusters, and can be largely explained by two factors. First, our experiment time baseline is sensitive to long-term intrinsic stellar variability. Second, the proper motion of stars behind spatial inhomogeneities in the foreground extinction screen can lead to variability. We recover the two known Galactic center eclipsing binary systems: IRS 16SW and S4-258 (E60). We constrain the Galactic center eclipsing binary fraction of known early-type stars to be at least 2.4±1.7%2.4 \pm 1.7\%. We find no evidence of an eclipsing binary among the young S-stars nor among the young stellar disk members. These results are consistent with the local OB eclipsing binary fraction. We identify a new periodic variable, S2-36, with a 39.43 day period. Further observations are necessary to determine the nature of this source.Comment: 69 pages, 28 figures, 12 tables. Accepted for publication in The Astrophysical Journa

    Redshifts for 2410 Galaxies in the Century Survey Region

    Get PDF
    The `Century Survey' strip covers 102 square degrees within the limits 8.5h \leq \alpha_{1950} \leq 16.5h, 29.0 degrees \leq \delta_{1950} \leq 30.0 degrees. The strip passes through the Corona Borealis supercluster and the outer region of the Coma cluster. Within the Century Survey region, we have measured 2410 redshifts which constitute four overlapping complete redshift surveys: (1) 1728 galaxies with Kron-Cousins R_{phot} \leq 16.13 covering the entire strip, (2) 507 galaxies with R_{phot} \leq 16.4 in the right ascension range 8h 32m \leq \alpha_{1950} \leq 10h 45m, (3) 1251 galaxies with absorption- and K-corrected R_{CCD, corr} \leq 16.2 covering the right ascension range 8.5h \leq \alpha_{1950} \leq 13.5h and (4) 1255 galaxies with absorption- and K-corrected V_{CCD, corr} \leq 16.7 also covering the right ascension range 8.5h \leq \alpha_{1950} \leq 13.5h. All of these redshift samples are more than 98 % complete to the specified magnitude limit.Comment: 18 pages, 9 figures, 3 tables, 2 abbreviated tables. In press, to appear in Astronomical Journal, Dec. 2001 issu

    Mixed valency in cerium oxide crystallographic phases: Determination of valence of the different cerium sites by the bond valence method

    Get PDF
    We have applied the bond valence method to cerium oxides to determine the oxidation states of the Ce ion at the various site symmetries of the crystals. The crystals studied include cerium dioxide and the two sesquioxides along with some selected intermediate phases which are crystallographically well characterized. Our results indicate that cerium dioxide has a mixed-valence ground state with an f-electron population on the Ce site of 0.27 while both the A- and C-sesquioxides have a nearly pure f^1 configuration. The Ce sites in most of the intermediate oxides have non-integral valences. Furthermore, many of these valences are different from the values predicted from a naive consideration of the stoichiometric valence of the compound

    The HST Key Project on the Extragalactic Distance Scale XXV. A Recalibration of Cepheid Distances to Type Ia Supernovae and the Value of the Hubble Constant

    Get PDF
    Cepheid-based distances to seven Type Ia supernovae (SNe)-host galaxies have been derived using the standard HST Key Project on the Extragalactic Distance Scale pipeline. For the first time, this allows for a transparent comparison of data accumulated as part of three different HST projects, the Key Project, the Sandage et al. Type Ia SNe program, and the Tanvir et al. Leo I Group study. Re-analyzing the Tanvir et al. galaxy and six Sandage et al. galaxies we find a mean (weighted) offset in true distance moduli of 0.12+/-0.07 mag -- i.e., 6% in linear distance -- in the sense of reducing the distance scale, or increasing H0. Adopting the reddening-corrected Hubble relations of Suntzeff et al. (1999), tied to a zero point based upon SNe~1990N, 1981B, 1998bu, 1989B, 1972E and 1960F and the photometric calibration of Hill et al. (1998), leads to a Hubble constant of H0=68+/-2(random)+/-5(systematic) km/s/Mpc. Adopting the Kennicutt et al. (1998) Cepheid period-luminosity-metallicity dependency decreases the inferred H0 by 4%. The H0 result from Type Ia SNe is now in good agreement, to within their respective uncertainties, with that from the Tully-Fisher and surface brightness fluctuation relations.Comment: Accepted for publication in The Astrophysical Journal. 62 pages, LaTeX, 9 Postscript figures. Also available at http://casa.colorado.edu/~bgibson/publications.htm

    The HST Key Project on the Extragalactic Distance Scale. XXVIII. Combining the Constraints on the Hubble Constant

    Full text link
    Since the launch of the Hubble Space Telescope nine years ago, Cepheid distances to 25 galaxies have been determined for the purpose of calibrating secondary distance indicators. A variety of these can now be calibrated, and the accompanying papers by Sakai, Kelson, Ferrarese, and Gibson employ the full set of 25 galaxies to consider the Tully-Fisher relation, the fundamental plane of elliptical galaxies, Type Ia supernovae, and surface brightness fluctuations. When calibrated with Cepheid distances, each of these methods yields a measurement of the Hubble constant and a corresponding measurement uncertainty. We combine these measurements in this paper, together with a model of the velocity field, to yield the best available estimate of the value of H_0 within the range of these secondary distance indicators and its uncertainty. The result is H_0 = 71 +/- 6 km/sec/Mpc. The largest contributor to the uncertainty of this 67% confidence level result is the distance of the Large Magellanic Cloud, which has been assumed to be 50 +/- 3 kpc

    The HST Key Project on the Extragalactic Distance Scale. XV. A Cepheid Distance to the Fornax Cluster and Its Implications

    Full text link
    Using the Hubble Space Telescope (HST) 37 long-period Cepheid variables have been discovered in the Fornax Cluster spiral galaxy NGC 1365. The resulting V and I period-luminosity relations yield a true distance modulus of 31.35 +/- 0.07 mag, which corresponds to a distance of 18.6 +/- 0.6 Mpc. This measurement provides several routes for estimating the Hubble Constant. (1) Assuming this distance for the Fornax Cluster as a whole yields a local Hubble Constant of 70 +/-18_{random} [+/-7]_{systematic} km/s/Mpc. (2) Nine Cepheid-based distances to groups of galaxies out to and including the Fornax and Virgo clusters yield Ho = 73 (+/-16)_r [+/-7]_s km/s/Mpc. (3) Recalibrating the I-band Tully-Fisher relation using NGC 1365 and six nearby spiral galaxies, and applying it to 15 galaxy clusters out to 100 Mpc gives Ho = 76 (+/-3)_r [+/-8]_s km/s/Mpc. (4) Using a broad-based set of differential cluster distance moduli ranging from Fornax to Abell 2147 gives Ho = 72 (+/-)_r [+/-6]_s km/s/Mpc. And finally, (5) Assuming the NGC 1365 distance for the two additional Type Ia supernovae in Fornax and adding them to the SnIa calibration (correcting for light curve shape) gives Ho = 67 (+/-6)_r [+/-7]_s km/s/Mpc out to a distance in excess of 500 Mpc. All five of these Ho determinations agree to within their statistical errors. The resulting estimate of the Hubble Constant combining all these determinations is Ho = 72 (+/-5)_r [+/-12]_s km/s/Mpc.Comment: Accepted for publication in the Astrophysical Journal, Apr. 10 issue 28 pages, 3 tables, 12 figures (Correct figures and abstract

    A Database of Cepheid Distance Moduli and TRGB, GCLF, PNLF and SBF Data Useful for Distance Determinations

    Full text link
    We present a compilation of Cepheid distance moduli and data for four secondary distance indicators that employ stars in the old stellar populations: the planetary nebula luminosity function (PNLF), the globular cluster luminosity function (GCLF), the tip of the red giant branch (TRGB), and the surface brightness fluctuation (SBF) method. The database includes all data published as of July 15, 1999. The main strength of this compilation resides in all data being on a consistent and homogeneous system: all Cepheid distances are derived using the same calibration of the period-luminosity relation, the treatment of errors is consistent for all indicators, measurements which are not considered reliable are excluded. As such, the database is ideal for inter-comparing any of the distance indicators considered, or for deriving a Cepheid calibration to any secondary distance indicator. Specifically, the database includes: 1) Cepheid distances, extinctions and metallicities; 2) apparent magnitudes of the PNLF cutoff; 3) apparent magnitudes and colors of the turnover of the GCLF (both in the V- and B-bands); 4) apparent magnitudes of the TRGB (in the I-band) and V-I colors at and 0.5 magnitudes fainter than the TRGB; 5) apparent surface brightness fluctuation magnitudes I, K', K_short, and using the F814W filter with the HST/WFPC2. In addition, for every galaxy in the database we give reddening estimates from DIRBE/IRAS as well as HI maps, J2000 coordinates, Hubble and T-type morphological classification, apparent total magnitude in B, and systemic velocity. (Abridged)Comment: Accepted for publication in the Astrophysical Journal Supplement Series. Because of space limitations, the figures included are low resolution bitmap images. Original figures can be found at http://www.astro.ucla.edu/~laura/pub.ht

    The Hubble Space Telescope Extragalactic Distance Scale Key Project. X. The Cepheid Distance to NGC 7331

    Full text link
    The distance to NGC 7331 has been derived from Cepheid variables observed with HST/WFPC2, as part of the Extragalactic Distance Scale Key Project. Multi-epoch exposures in F555W (V) and F814W (I), with photometry derived independently from DoPHOT and DAOPHOT/ALLFRAME programs, were used to detect a total of 13 reliable Cepheids, with periods between 11 and 42 days. The relative distance moduli between NGC 7331 and the LMC, imply an extinction to NGC 7331 of A_V = 0.47+-0.15 mag, and an extinction-corrected distance modulus to NGC 7331 of 30.89+-0.14(random) mag, equivalent to a distance of 15.1 Mpc. There are additional systematic uncertainties in the distance modulus of +-0.12 mag due to the calibration of the Cepheid Period-Luminosity relation, and a systematic offset of +0.05+-0.04 mag if we applied the metallicity correction inferred from the M101 results of Kennicutt et al 1998.Comment: To be published in The Astrophysical Journal, 1998 July 1, v501 note: Figs 1 and 2 (JPEG files) and Fig 7 (multipage .eps file) need to be viewed/printed separatel

    Tip of the Red Giant Branch Distances. I. Optimization of a Maximum Likelihood Algorithm

    Full text link
    Accurate distances to galaxies can be determined from the luminosities of stars at the Tip of the Red Giant Branch (TRGB). We use a Maximum Likelihood algorithm to locate the TRGB in galaxy color-magnitude diagrams. The algorithm is optimized by introducing reliable photometric errors and a completeness characterization determined with artificial star experiments. The program is extensively tested using Monte-Carlo simulations, artificial galaxies, and a sample of nearby dwarf galaxies observed with HST/WFPC2 and ACS. Our procedure is shown to be reliable, to have good accuracy, and to not introduce any systematic errors. The methodology is especially useful in cases where the TRGB approaches the photometric limit and/or the RGB is poorly populated.Comment: submitted to A
    corecore