5,604 research outputs found
Synthesis and electronic properties of Ruddlesden-Popper strontium iridate epitaxial thin films stabilized by control of growth kinetics
We report on the selective fabrication of high-quality SrIrO and
SrIrO epitaxial thin films from a single polycrystalline SrIrO
target by pulsed laser deposition. Using a combination of X-ray diffraction and
photoemission spectroscopy characterizations, we discover that within a
relatively narrow range of substrate temperature, the oxygen partial pressure
plays a critical role in the cation stoichiometric ratio of the films, and
triggers the stabilization of different Ruddlesden-Popper (RP) phases. Resonant
X-ray absorption spectroscopy measurements taken at the Ir -edge and the O
-edge demonstrate the presence of strong spin-orbit coupling, and reveal the
electronic and orbital structures of both compounds. These results suggest that
in addition to the conventional thermodynamics consideration, higher members of
the SrIrO series can possibly be achieved by kinetic
control away from the thermodynamic limit. These findings offer a new approach
to the synthesis of ultra-thin films of the RP series of iridates and can be
extended to other complex oxides with layered structure.Comment: 7 pages, 6 figure
Experimental Gonococcal Infection in Male Volunteers: Cumulative Experience with Neisseria gonorrhoeae Strains FA1090 and MS11mkC
Experimental infection of male volunteers with Neisseria gonorrhoeae is safe and reproduces the clinical features of naturally acquired gonococcal urethritis. Human inoculation studies have helped define the natural history of experimental infection with two well-characterized strains of N. gonorrhoeae, FA1090 and MS11mkC. The human model has proved useful for testing the importance of putative gonococcal virulence factors for urethral infection in men. Studies with isogenic mutants have improved our understanding of the requirements for gonococcal LOS structures, pili, opacity proteins, IgA1 protease, and the ability of infecting organisms to obtain iron from human transferrin and lactoferrin during uncomplicated urethritis. The model also presents opportunities to examine innate host immune responses that may be exploited or improved in development and testing of gonococcal vaccines. Here we review results to date with human experimental gonorrhea
Recommended from our members
Physical, chemical, and toxicological characteristics of particulate emissions from current technology gasoline direct injection vehicles
Comparison of the COBE FIRAS and DIRBE Calibrations
We compare the independent FIRAS and DIRBE observations from the COBE in the
wavelength range 100-300 microns. This cross calibration provides checks of
both data sets. The results show that the data sets are consistent within the
estimated gain and offset uncertainties of the two instruments. They show the
possibility of improving the gain and offset determination of DIRBE at 140 and
240 microns.Comment: Accepted for publication in the Astrophysical Journal 11 pages, plus
3 figures in separate postscript files. Figure 3 has three part
Decoupling carrier concentration and electron-phonon coupling in oxide heterostructures observed with resonant inelastic x-ray scattering
We report the observation of multiple phonon satellite features in ultra thin
superlattices of form SrIrO/SrTiO using resonant inelastic x-ray
scattering. As the values of and vary the energy loss spectra show a
systematic evolution in the relative intensity of the phonon satellites. Using
a closed-form solution for the cross section, we extract the variation in the
electron-phonon coupling strength as a function of and . Combined with
the negligible carrier doping into the SrTiO layers, these results indicate
that tuning of the electron-phonon coupling can be effectively decoupled from
doping. This work showcases both a feasible method to extract the
electron-phonon coupling in superlattices and unveils a potential route for
tuning this coupling which is often associated with superconductivity in
SrTiO-based systems.Comment: 4 pages, 5 figure
Observation of a multimode plasma response and its relationship to density pumpout and edge-localized mode suppression
Density pumpout and edge-localized mode (ELM) suppression by applied n=2 magnetic fields in low-collisionality DIII-D plasmas are shown to be correlated with the magnitude of the plasma response driven on the high-field side (HFS) of the magnetic axis but not the low-field side (LFS) midplane. These distinct responses are a direct measurement of a multimodal magnetic plasma response, with each structure preferentially excited by a different n=2 applied spectrum and preferentially detected on the LFS or HFS. Ideal and resistive magneto-hydrodynamic (MHD) calculations find that the LFS measurement is primarily sensitive to the excitation of stable kink modes, while the HFS measurement is primarily sensitive to resonant currents (whether fully shielding or partially penetrated). The resonant currents are themselves strongly modified by kink excitation, with the optimal applied field pitch for pumpout and ELM suppression significantly differing from equilibrium field alignment.This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Fusion
Energy Sciences, using the DIII-D National Fusion Facility,
a DOE Office of Science user facility, under Awards No. DE-FC02-04ER54698, No. DE-AC02-09CH11466,
No. DE-FG02-04ER54761, No. DE-AC05-06OR23100,
No. DE-SC0001961, and No. DE-AC05-00OR22725.
S. R. H. was supported by AINSE and ANSTO
Evidence Propagation and Consensus Formation in Noisy Environments
We study the effectiveness of consensus formation in multi-agent systems
where there is both belief updating based on direct evidence and also belief
combination between agents. In particular, we consider the scenario in which a
population of agents collaborate on the best-of-n problem where the aim is to
reach a consensus about which is the best (alternatively, true) state from
amongst a set of states, each with a different quality value (or level of
evidence). Agents' beliefs are represented within Dempster-Shafer theory by
mass functions and we investigate the macro-level properties of four well-known
belief combination operators for this multi-agent consensus formation problem:
Dempster's rule, Yager's rule, Dubois & Prade's operator and the averaging
operator. The convergence properties of the operators are considered and
simulation experiments are conducted for different evidence rates and noise
levels. Results show that a combination of updating on direct evidence and
belief combination between agents results in better consensus to the best state
than does evidence updating alone. We also find that in this framework the
operators are robust to noise. Broadly, Yager's rule is shown to be the better
operator under various parameter values, i.e. convergence to the best state,
robustness to noise, and scalability.Comment: 13th international conference on Scalable Uncertainty Managemen
- …