2,358 research outputs found
Transport Properties of a spinon Fermi surface coupled to a U(1) gauge field
With the organic compound -(BEDT-TTF)-Cu(CN) in mind, we
consider a spin liquid system where a spinon Fermi surface is coupled to a U(1)
gauge field. Using the non-equilibrium Green's function formalism, we derive
the Quantum Boltzmann Equation (QBE) for this system. In this system, however,
one cannot a priori assume the existence of Landau quasiparticles. We show that
even without this assumption one can still derive a linearized equation for a
generalized distribution function. We show that the divergence of the effective
mass and of the finite temperature self-energy do not enter these transport
coefficients and thus they are well-defined. Moreover, using a variational
method, we calculate the temperature dependence of the spin resistivity and
thermal conductivity of this system.Comment: 12 page
High-resolution saturation spectroscopy of singly-ionized iron with a pulsed uv laser
We describe the design and realization of a scheme for uv laser spectroscopy
of singly-ionized iron (Fe II) with very high resolution. A buffer-gas cooled
laser ablation source is used to provide a plasma close to room temperature
with a high density of Fe II. We combine this with a scheme for pulsed-laser
saturation spectroscopy to yield sub-Doppler resolution. In a demonstration
experiment, we have examined an Fe II transition near 260 nm, attaining a
linewidth of about 250 MHz. The method is well-suited to measuring transition
frequencies and hyperfine structure. It could also be used to measure small
isotope shifts in isotope-enriched samples.Comment: 9 pages, 5 figures, updated Fig. 3. For submission to J. Phys.
Space-Time Variation of Physical Constants and Relativistic Corrections in Atoms
Detection of high-redshift absorption in the optical spectra of quasars have
provided a powerful tool to measure spatial and temporal variations of physical
``constants'' in the Universe. It is demonstrated that high sensitivity to the
variation of the fine structure constant alpha can be obtained from a
comparison of the spectra of heavy and light atoms (or molecules). We have
performed calculations for the pair FeII and MgII for which accurate quasar and
laboratory spectra are available. A possibility of times enhanced
effects of the fundamental constants variation suitable for laboratory
measurements is also discussed.Comment: 8 pages; LaTeX; Submitted to Phys. Rev. Let
A Search for Time Variation of the Fine Structure Constant
A method offering an order of magnitude sensitivity gain is described for
using quasar spectra to investigate possible time or space variation in the
fine structure constant, alpha. Applying the technique to a sample of 30
absorption systems, spanning redshifts 0.5 < z< 1.6, obtained with the Keck I
telescope, we derive limits on variations in alpha over a wide range of epochs.
For the whole sample Delta(alpha)/alpha = -1.1 +/- 0.4 x 10^{-5}. This
deviation is dominated by measurements at z > 1, where Delta(alpha)/alpha =
-1.9 +/- 0.5 x 10^{-5}. For z < 1, Delta(alpha)/alpha = -0.2 +/- 0.4 x 10^{-5},
consistent with other known constraints. Whilst these results are consistent
with a time-varying alpha, further work is required to explore possible
systematic errors in the data, although careful searches have so far not
revealed any.Comment: 4 pages, 1 figure, accepted for publication in Physical Review
Letter
Modified p-modes in penumbral filaments?
Aims: The primary objective of this study is to search for and identify wave
modes within a sunspot penumbra.
Methods: Infrared spectropolarimetric time series data are inverted using a
model comprising two atmospheric components in each spatial pixel. Fourier
phase difference analysis is performed on the line-of-sight velocities
retrieved from both components to determine time delays between the velocity
signals. In addition, the vertical separation between the signals in the two
components is calculated from the Stokes velocity response functions.
Results: The inversion yields two atmospheric components, one permeated by a
nearly horizontal magnetic field, the other with a less-inclined magnetic
field. Time delays between the oscillations in the two components in the
frequency range 2.5-4.5 mHz are combined with speeds of atmospheric wave modes
to determine wave travel distances. These are compared to expected path lengths
obtained from response functions of the observed spectral lines in the
different atmospheric components. Fast-mode (i.e., modified p-mode) waves
exhibit the best agreement with the observations when propagating toward the
sunspot at an angle ~50 degrees to the vertical.Comment: 8 pages, 12 figures, accepted for publication in Astronomy &
Astrophysic
Instantaneous Normal Mode Analysis of Supercooled Water
We use the instantaneous normal mode approach to provide a description of the
local curvature of the potential energy surface of a model for water. We focus
on the region of the phase diagram in which the dynamics may be described by
the mode-coupling theory. We find, surprisingly, that the diffusion constant
depends mainly on the fraction of directions in configuration space connecting
different local minima, supporting the conjecture that the dynamics are
controlled by the geometric properties of configuration space. Furthermore, we
find an unexpected relation between the number of basins accessed in
equilibrium and the connectivity between them.Comment: 5 pages, 4 figure
Diffusivity and configurational entropy maxima in short range attractive colloids
We study tagged particle diffusion at large packing fractions, for a model of
particles interacting with a generalized Lennard-Jones 2n-n potential, with
large n. The resulting short-range potential mimics interactions in colloidal
systems. In agreement with previous calculations for short-range potential, we
observe a diffusivity maximum as a function of temperature. By studying the
temperature dependence of the configurational entropy -- which we evaluate with
two different methods -- we show that a configurational entropy maximum is
observed at a temperature close to that of the diffusivity maximum. Our
findings suggest a relationbetween dynamics and number of distinct states for
short-range potentials.Comment: 4 pages, 3 figures, submited to Physical Review Lette
Oscillator Strengths and Damping Constants for Atomic Lines in the J and H Bands
We have built a line list in the near-infrared J and H bands (1.00-1.34,
1.49-1.80 um) by gathering a series of laboratory and computed line lists.
Oscillator strengths and damping constants were computed or obtained by fitting
the solar spectrum.
The line list presented in this paper is, to our knowledge, the most complete
one now available, and supersedes previous lists.Comment: Accepted, Astrophysical Journal Supplement, tentatively scheduled for
the Sep. 1999 Vol. 124 #1 issue. Text and tables also available at
http://www.iagusp.usp.br/~jorge
Energy landscapes, ideal glasses, and their equation of state
Using the inherent structure formalism originally proposed by Stillinger and
Weber [Phys. Rev. A 25, 978 (1982)], we generalize the thermodynamics of an
energy landscape that has an ideal glass transition and derive the consequences
for its equation of state. In doing so, we identify a separation of
configurational and vibrational contributions to the pressure that corresponds
with simulation studies performed in the inherent structure formalism. We
develop an elementary model of landscapes appropriate to simple liquids which
is based on the scaling properties of the soft-sphere potential complemented
with a mean-field attraction. The resulting equation of state provides an
accurate representation of simulation data for the Lennard-Jones fluid,
suggesting the usefulness of a landscape-based formulation of supercooled
liquid thermodynamics. Finally, we consider the implications of both the
general theory and the model with respect to the so-called Sastry density and
the ideal glass transition. Our analysis shows that a quantitative connection
can be made between properties of the landscape and a simulation-determined
Sastry density, and it emphasizes the distinction between an ideal glass
transition and a Kauzmann equal-entropy condition.Comment: 11 pages, 3 figure
- …
