209,314 research outputs found
Four-dimensional worldwide atmospheric models: ANYPT and ANYRG
Computer programs read magnetic-tape data bases and computer meteorological profiles for any position, time, and height (from zero to 25 km). System assists in analyses of distortion of information obtained from aircraft-mounted or spacecraft-mounted electromagnetic sensors
Multiple IMU system hardware interface design, volume 2
The design of each system component is described. Emphasis is placed on functional requirements unique in this system, including data bus communication, data bus transmitters and receivers, and ternary-to-binary torquing decision logic. Mechanization drawings are presented
Evidence for an Io plasma torus influence on high-latitude Jovian radio emission
We report the discovery with the Ulysses unified radio and plasma wave (URAP) instrument of features in the Jovian hectometer (HOM) wavelength radio emission spectrum which recur with a period about 2–4% longer than the Jovian System III rotation period. We conclude that the auroral HOM emissions are periodically blocked from “view” by regions in the torus of higher than average density and that these regions rotate more slowly than System III and persist for considerable intervals of time. We have reexamined the Voyager planetary radio astronomy (PRA) data taken during the flybys in 1979 and have found similar features in the HOM spectrum. Contemporaneous observations by Brown (1994) show an [SII] emission line enhancement in the Io plasma torus that rotates more slowly than System III by the same amount as the HOM feature
Multiple pass reimaging optical system
An optical imaging system for enabling nonabsorbed light imaged onto a photodetective surface to be collected and reimaged one or more times onto that surface in register with the original image. The system includes an objective lens, one or more imaging lenses, one or more retroreflectors and perhaps a prism for providing optical matching of the imaging lens focal planes to the photo detective surface
Candidate Members and Age Estimate of the Family of Kuiper Belt Object 2003 EL61
The collisional family of Kuiper belt object (KBO) 2003 EL61 opens the
possibility for many interesting new studies of processes important in the
formation and evolution of the outer solar system. As the first family in the
Kuiper belt, it can be studied using techniques developed for studying asteroid
families, although some modifications are necessary. Applying these modified
techniques allows for a dynamical study of the 2003 EL61 family. The velocity
required to change orbits is used to quantitatively identify objects near the
collision. A method for identifying family members that have potentially
diffused in resonances (like 2003 EL61) is also developed. Known family members
are among the very closest KBOs to the collision and two new likely family
members are identified: 2003 UZ117 and 1999 OY3. We also give tables of
candidate family members which require future observations to confirm
membership. We estimate that a minimum of ~1 GYr is needed for resonance
diffusion to produce the current position of 2003 EL61, implying that the
family is likely primordial. Future refinement of the age estimate is possible
once (many) more resonant objects are identified. The ancient nature of the
collision contrasts with the seemingly fresh surfaces of known family members,
suggesting that our understanding of outer solar system surfaces is incomplete.Comment: 22 pages, 5 figures, accepted to AJ, author's cv available at
http://www.gps.caltech.edu/~dari
Motion and equilibrium of a spheromak in a toroidal flux conserver
A number of experiments have been performed on spheromaks injected into the empty vacuum vessel of the Caltech ENCORE tokamak (i.e., without tokamak plasma) [Phys. Rev. Lett. 64, 2144 (1990); Phys. Fluids B 2, 1306 (1990)]. Magnetic probe arrays (in a number of configurations) have been used to make single shot, unaveraged, in situ measurements of the spheromak equilibrium. These measurements are important because (i) they reveal for the first time the equilibrium structure of spheromaks in a toroidal geometry, (ii) they provide a reliable estimate of magnetic helicity and energy of spheromak plasmas used in injection experiments [Phys. Rev. Lett. 64, 2144 (1990)], and (iii) they constitute the first measurements of spheromak motion across and interaction with static magnetic fields (which are useful in corroborating recent theories). Probe measurements in the tokamak dc toroidal field show for the first time that the spheromak exhibits a ``double tilt.''The spheromak first tilts while in the cylindrical entrance region, emerging into the tokamak vessel antialigned to the dc toroidal field, then expands into the tokamak vacuum vessel, and finally tilts again to form an oblate (nonaxisymmetric, m=1) configuration. In addition, the spheromak drifts vertically in the direction given by Jcenter×Btok, where Jcenter is the unbalanced poloidal current that threads the center of the spheromak torus. Probe arrays at different toroidal locations show that the spheromak shifts toroidally (horizontally left or right) in the direction opposite that of the static toroidal field. In the absence of toroidal flux, the m=1 object develops a helical pitch, the sense of the pitch depending on the sign of the spheromak helicity. The spheromak equilibrium in the toroidal vessel is well fit by a pressureless infinite cylindrical model; however, there is evidence of deviation from m=1 symmetry because of toroidal effects, nonuniform J/B profile, and finite beta. Experiments performed in a test facility consisting of the spheromak gun and a replica of the entrance region (with a closed end) show that the spheromak is generated with its axis coaxial with that of the gun. Coherent, m=2 magnetic modes are observed during the formation stage rotating in the E×B direction at about 125 kHz (rotation velocity corresponding to 40% of the Alfvén speed)
A counter example in linear feature selection theory
The linear feature selection problem in multi-class pattern recognition is described as that of linearly transforming statistical information from n-dimensional (real Euclidean) space into k-dimensional space, while requiring that average interclass divergence in the transformed space decrease as little as possible. Divergence is the expected interclass divergence derived from Hajek two-class divergence; it is known that there always exists a k x n matrix B such that the transformation determined by B maximizes the divergence in k-dimensional space. It is known that, if Q is any k x k invertible matrix, and B is as defined above, then QB again maximizes the divergence in k-space. It is shown that the converse of this result is false: two matrices exist, B sub 1 and B sub 2, each of which maximizes transformed divergence, which are not related in the fashion B sub 2 = QB sub 1 for any k x k matrix Q
Interaction dipole between rare-gas atoms
Formula for coefficient of electric dipole moment of rare gas atoms in S-state
- …
