47 research outputs found

    DUKweb, diachronic word representations from the UK Web Archive corpus

    Get PDF
    Lexical semantic change (detecting shifts in the meaning and usage of words) is an important task for social and cultural studies as well as for Natural Language Processing applications. Diachronic word embeddings (time-sensitive vector representations of words that preserve their meaning) have become the standard resource for this task. However, given the significant computational resources needed for their generation, very few resources exist that make diachronic word embeddings available to the scientific community. In this paper we present DUKweb, a set of large-scale resources designed for the diachronic analysis of contemporary English. DUKweb was created from the JISC UK Web Domain Dataset (1996–2013), a very large archive which collects resources from the Internet Archive that were hosted on domains ending in ‘.uk’. DUKweb consists of a series word co-occurrence matrices and two types of word embeddings for each year in the JISC UK Web Domain dataset. We show the reuse potential of DUKweb and its quality standards via a case study on word meaning change detection

    Mining the UK web archive for semantic change detection

    Get PDF
    Semantic change detection (i.e., identify- ing words whose meaning has changed over time) started emerging as a grow- ing area of research over the past decade, with important downstream applications in natural language processing, historical linguistics and computational social sci- ence. However, several obstacles make progress in the domain slow and diffi- cult. These pertain primarily to the lack of well-established gold standard datasets, resources to study the problem at a fine- grained temporal resolution, and quantita- tive evaluation approaches. In this work, we aim to mitigate these issues by (a) re- leasing a new labelled dataset of more than 47K word vectors trained on the UK Web Archive over a short time-frame (2000- 2013); (b) proposing a variant of Pro- crustes alignment to detect words that have undergone semantic shift; and (c) intro- ducing a rank-based approach for evalu- ation purposes. Through extensive nu- merical experiments and validation, we il- lustrate the effectiveness of our approach against competitive baselines. Finally, we also make our resources publicly available to further enable research in the domain.This work was supported by The Alan Turing In- stitute under the EPSRC grant EP/N510129/1 and the seed funding grant SF099

    Local2Global: a distributed approach for scaling representation learning on graphs

    Get PDF
    We propose a decentralised “local2global” approach to graph representation learning, that one can a-priori use to scale any embedding technique. Our local2global approach proceeds by first dividing the input graph into overlapping subgraphs (or “patches”) and training local representations for each patch independently. In a second step, we combine the local representations into a globally consistent representation by estimating the set of rigid motions that best align the local representations using information from the patch overlaps, via group synchronization. A key distinguishing feature of local2global relative to existing work is that patches are trained independently without the need for the often costly parameter synchronization during distributed training. This allows local2global to scale to large-scale industrial applications, where the input graph may not even fit into memory and may be stored in a distributed manner. We apply local2global on data sets of different sizes and show that our approach achieves a good trade-off between scale and accuracy on edge reconstruction and semi-supervised classification. We also consider the downstream task of anomaly detection and show how one can use local2global to highlight anomalies in cybersecurity networks

    A Linear Transportation Lp Distance for Pattern Recognition

    Get PDF
    The transportation Lp distance, denoted TLp, has been proposed as a generalisation of Wasserstein Wp distances motivated by the property that it can be applied directly to colour or multi-channelled images, as well as multivariate time-series without normalisation or mass constraints. These distances, as with Wp, are powerful tools in modelling data with spatial or temporal perturbations. However, their computational cost can make them infeasible to apply to even moderate pattern recognition tasks. We propose linear versions of these distances and show that the linear TLp distance significantly improves over the linear Wp distance on signal processing tasks, whilst being several orders of magnitude faster to compute than the TLp distance

    Rank Aggregation for Course Sequence Discovery

    Full text link
    In this work, we adapt the rank aggregation framework for the discovery of optimal course sequences at the university level. Each student provides a partial ranking of the courses taken throughout his or her undergraduate career. We compute pairwise rank comparisons between courses based on the order students typically take them, aggregate the results over the entire student population, and then obtain a proxy for the rank offset between pairs of courses. We extract a global ranking of the courses via several state-of-the art algorithms for ranking with pairwise noisy information, including SerialRank, Rank Centrality, and the recent SyncRank based on the group synchronization problem. We test this application of rank aggregation on 15 years of student data from the Department of Mathematics at the University of California, Los Angeles (UCLA). Furthermore, we experiment with the above approach on different subsets of the student population conditioned on final GPA, and highlight several differences in the obtained rankings that uncover hidden pre-requisites in the Mathematics curriculum

    Modeling outcomes of soccer matches

    Get PDF
    We compare various extensions of the Bradley–Terry model and a hierarchical Poisson log-linear model in terms of their performance in predicting the outcome of soccer matches (win, draw, or loss). The parameters of the Bradley–Terry extensions are estimated by maximizing the log-likelihood, or an appropriately penalized version of it, while the posterior densities of the parameters of the hierarchical Poisson log-linear model are approximated using integrated nested Laplace approximations. The prediction performance of the various modeling approaches is assessed using a novel, context-specific framework for temporal validation that is found to deliver accurate estimates of the test error. The direct modeling of outcomes via the various Bradley–Terry extensions and the modeling of match scores using the hierarchical Poisson log-linear model demonstrate similar behavior in terms of predictive performance

    Simple and scalable constrained clustering: a generalized spectral method

    No full text
    We present a simple spectral approach to the well-studied constrained clustering problem. It captures constrained clustering as a generalized eigenvalue problem with graph Laplacians. The algorithm works in nearly-linear time and provides concrete guarantees for the quality of the clusters, at least for the case of 2-way partitioning. In practice this translates to a very fast implementation that consistently outperforms existing spectral approaches both in speed and quality

    Simple and scalable constrained clustering: a generalized spectral method

    No full text
    We present a simple spectral approach to the well-studied constrained clustering problem. It captures constrained clustering as a generalized eigenvalue problem with graph Laplacians. The algorithm works in nearly-linear time and provides concrete guarantees for the quality of the clusters, at least for the case of 2-way partitioning. In practice this translates to a very fast implementation that consistently outperforms existing spectral approaches both in speed and quality

    Sync-Rank: Robust ranking, constrained ranking and rank aggregation via eigenvector and SDP synchronization

    No full text
    We consider the classical problem of establishing a statistical ranking of a set of n items given a set of inconsistent and incomplete pairwise comparisons between such items. Instantiations of this problem occur in numerous applications in data analysis (e.g., ranking teams in sports data), computer vision, and machine learning. We formulate the above problem of ranking with incomplete noisy information as an instance of the group synchronization problem over the group SO(2) of planar rotations, whose usefulness has been demonstrated in numerous applications in recent years in computer vision and graphics, sensor network localization and structural biology. Its least squares solution can be approximated by either a spectral or a semidefinite programming (SDP) relaxation, followed by a rounding procedure. We perform extensive numerical simulations on both synthetic and real-world data sets, which show that our proposed method compares favorably to other ranking methods from the recent literature. Existing theoretical guarantees on the group synchronization problem imply lower bounds on the largest amount of noise permissible in the data while still achieving an approximate recovery of the ground truth ranking. We propose a similar synchronization-based algorithm for the rank-aggregation problem, which integrates in a globally consistent ranking many pairwise rank-offsets or partial rankings, given by different rating systems on the same set of items, an approach which yields significantly more accurate results than other aggregation methods, including Rank-Centrality, a recent state-of-the-art algorithm. Furthermore, we discuss the problem of semi-supervised ranking when there is available information on the ground truth rank of a subset of players, and propose an algorithm based on SDP which is able to recover the ranking of the remaining players, subject to such hard constraints. Finally, synchronization-based ranking, combined with a spectral technique for the densest subgraph problem, makes it possible to extract partial rankings that other methods are not able to find, in other words, to identify the rank of a small subset of players whose pairwise rank comparisons are less noisy than the rest of the data. We discuss a number of related open questions which we defer for future investigation
    corecore