318 research outputs found

    The Oyster River Culvert Analysis Project

    Get PDF
    Studies have already detected intensification of precipitation events consistent with climate change projections. Communities may have a window of opportunity to prepare, but information sufficiently quantified and localized to support adaptation programs is sparse: published literature is typically characterized by general resilience building or regional vulnerability studies. The Fourth Assessment Report of the IPCC observed that adaptation can no longer be postponed pending the effective elimination of uncertainty. Methods must be developed that manage residual uncertainty, providing community leaders with decision-support information sufficient for implementing infrastructure adaptation programs. This study developed a local-scale and actionable protocol for maintaining historical risk levels for communities facing significant impacts from climate change and population growth. For a coastal watershed, the study assessed the capacity of the present stormwater infrastructure capacity for conveying expected peak flow resulting from climate change and population growth. The project transferred coupled-climate model projections to the culvert system, in a form understandable to planners, resource managers and decision-makers; applied standard civil engineering methods to reverse-engineer culverts to determine existing and required capacities; modeled the potential for LID methods to manage peak flow in lieu of, or combination with, drainage system upsizing; and estimated replacement costs using local and national construction cost data. The mid-21st century, most likely 25-year, 24-hour precipitation is estimated to be 35% greater than the TP-40 precipitation for the SRES A1b trajectory, and 64% greater than the TP-40 value for the SRES A1fi trajectory. 5% of culverts are already undersized for the TP-40 event to which they should have been designed. Under the most likely A1b trajectory, an additional 12% of culverts likely will be undersized, while under the most likely A1fi scenario, an additional 19% likely will be undersized. These conditions place people and property at greater risk than that historically acceptable from the TP-4025-year design storm. This risk level may be maintained by a long-term upgrade program, utilizing existing strategies to manage uncertainty and costs. At the upper-95% confidence limit for the A1fi 25-year event, 65% of culverts are adequately sized, and building the remaining 35%, and planned, culverts to thrice the cross-sectional area specified from TP-40 should provide adequate capacity through this event. Realizable LID methods can mitigate significant impacts from climate change and population growth, however effectiveness is limited for the more pessimistic climate change projections. Results indicate that uncertainty in coupled-climate model projections is not an impediment to adaptation. This study makes a significant contribution toward the generation of reliable and specific estimates of impacts from climate change, in support of programs to adapt civil infrastructures. This study promotes a solution to today\u27s arguably most significant challenge in civil infrastructure adaptation: translating the extensive corpus of adaptation theory and regional-scale impacts analyses into localscale action

    Copy number variation analysis in the context of electronic medical records and large-scale genomics consortium efforts

    Get PDF
    The goal of this paper is to review recent research on copy number variations (CNVs) and their association with complex and rare diseases. In the latter part of this paper, we focus on how large biorepositories such as the electronic medical record and genomics (eMERGE) consortium may be best leveraged to systematically mine for potentially pathogenic CNVs, and we end with a discussion of how such variants might be reported back for inclusion in electronic medical records as part of medical history

    Incidence of the Beet Leafhopper-Transmitted Virescence Agent Phytoplasma in local Populations of the Beet Leafhopper, Circulifer tenellus, in Washington State

    Get PDF
    Phytoplasma diseases are increasingly becoming important in vegetable crops in the Pacific Northwest. Recently, growers in the Columbia Basin and Yakima Valley experienced serious outbreaks of potato purple top disease that caused significant yield loss and a reduction in tuber processing quality. It was determined that the beet leafhopper-transmitted virescence agent (BLTVA) phytoplasma was the causal agent of the disease in the area and that this pathogen was transmitted by the beet leafhopper, Circulifer tenellus Baker (Hemiptera: Cicadellidae). To provide the most effective management of phytoplasmas, timing of insecticide applications targeted against insects vectoring these pathogens should be correlated with both insect abundance and infectivity. Beet leafhoppers were collected from a potato field and nearby weeds in Washington throughout the 2005, 2006, and 2007 growing seasons and tested for BLTVA by PCR to determine the incidence of this phytoplasma in the insects. In addition, overwintering beet leafhoppers were collected throughout Columbia Basin and Yakima Valley and tested for BLTVA to investigate if these insects might constitute a source of inoculum for this phytoplasma from one season to the next. Results showed that 29.6% of overwintering leafhoppers collected near potato fields carried the phytoplasma. BLTVA-infected leafhoppers were also found in both potatoes and nearby weedy habitats throughout the growing season. PCR testing indicated that a large proportion of beet leafhoppers invading potatoes were infected with the phytoplasma, with an average of 20.8, 34.8, and 9.2% in 2005, 2006, and 2007, respectively. Similarly, BLTVA infection rate in leafhoppers collected from weeds in the vicinity of potatoes averaged 28.3, 24.5, and 5.6% in 2005, 2006, and 2007, respectively. Information from this study will help develop action thresholds for beet leafhopper control to reduce incidence of purple top disease in potatoes

    Angiopoietin-Like4 Is a Novel Marker of COVID-19 Severity

    Get PDF
    IMPORTANCE: Vascular dysfunction and capillary leak are common in critically ill COVID-19 patients, but identification of endothelial pathways involved in COVID-19 pathogenesis has been limited. Angiopoietin-like 4 (ANGPTL4) is a protein secreted in response to hypoxic and nutrient-poor conditions that has a variety of biological effects including vascular injury and capillary leak. OBJECTIVES: To assess the role of ANGPTL4 in COVID-19-related outcomes. DESIGN SETTING AND PARTICIPANTS: Two hundred twenty-five COVID-19 ICU patients were enrolled from April 2020 to May 2021 in a prospective, multicenter cohort study from three different medical centers, University of Washington, University of Southern California and New York University. MAIN OUTCOMES AND MEASURES: Plasma ANGPTL4 was measured on days 1, 7, and 14 after ICU admission. We used previously published tissue proteomic data and lung single nucleus RNA (snRNA) sequencing data from specimens collected from COVID-19 patients to determine the tissues and cells that produce ANGPTL4. RESULTS: Higher plasma ANGPTL4 concentrations were significantly associated with worse hospital mortality (adjusted odds ratio per log CONCLUSIONS AND RELEVANCE: ANGPTL4 is expressed in pulmonary epithelial cells and fibroblasts and is associated with clinical prognosis in critically ill COVID-19 patients
    corecore