1,313 research outputs found
Demographic vital rates and population growth: rethinking the relationship in a harvested elk population
Understanding the nature of the relationship between demographic vital rates and the rate of population change (λ) is important for determining effective strategies for population management and conservation. We examined the relative impacts of various demographic vital rates on λ within the range of temporal vital rate variability observed in a harvested population to test the hypotheses that adult survival rates in ungulates are relatively invariant when compared to other vital rates and that variability in calf survival has a greater influence on rates of population change than adult survival. Vital rates were estimated for an elk (_Cervus elaphus_) population at Fort Riley, Kansas from October 2003 – February 2007. The magnitude of adult survival rates were similar to other harvested populations and models including a negative relationship between survival and age received the highest levels of support. Prime-age adult survival had the highest stage-specific elasticity values, indicating a high contribution of these matrix elements to λ. Life-stage simulation analysis indicated that variation in calf survival had the highest correlation with variation in λ (r^2^ = 0.61). Our results suggest that adult survival rates in harvested populations may experience increased levels of variability, but that calf survival rates have the greatest relative influence on λ due to the wider range of variability observed for this vital rate
CCD Parallaxes for 309 Late-type Dwarfs and Subdwarfs
New, updated, and/or revised CCD parallaxes determined with the Strand
Astrometric Reflector at the Naval Observatory Flagstaff Station (NOFS) are
presented. Included are results for 309 late-type dwarf and subdwarf stars
observed over the 30+ years that the program operated. For 124 of the stars,
parallax determinations from other investigators have already appeared in the
literature and we compare the different results. Also included here is new or
updated photometry on the Johnson-Kron-Cousins system for all but a few of
the faintest targets. Together with 2MASS near-infrared photometry, a
sample of absolute magnitude versus color and color versus color diagrams are
constructed. Since large proper motion was a prime criterion for targeting the
stars, the majority turn out to be either M-type subdwarfs or late M-type
dwarfs. The sample also includes 50 dwarf or subdwarf L-type stars, and four T
dwarfs. Possible halo subdwarfs are identified in the sample based on
tangential velocity, subluminosity, and spectral type. Residuals from the
solutions for parallax and proper motion for several stars show evidence of
astrometric perturbations.Comment: Machine-readable tables are available as supplemental material (click
on "Other Formats" to access
Trigonometric Parallaxes of Central Stars of Planetary Nebulae
Trigonometric parallaxes of 16 nearby planetary nebulae are presented,
including reduced errors for seven objects with previous initial results and
results for six new objects. The median error in the parallax is 0.42 mas, and
twelve nebulae have parallax errors less than 20 percent. The parallax for
PHL932 is found here to be smaller than was measured by Hipparcos, and this
peculiar object is discussed. Comparisons are made with other distance
estimates. The distances determined from these parallaxes tend to be
intermediate between some short distance estimates and other long estimates;
they are somewhat smaller than estimated from spectra of the central stars.
Proper motions and tangential velocities are presented. No astrometric
perturbations from unresolved close companions are detected.Comment: 24 pages, includes 4 figures. Accepted for A
Discovery of a Brown Dwarf Companion to Gliese 570ABC: A 2MASS T Dwarf Significantly Cooler than Gliese 229B
We report the discovery of a widely separated (258\farcs3\pm0\farcs4) T
dwarf companion to the Gl 570ABC system. This new component, Gl 570D, was
initially identified from the Two Micron All Sky Survey (2MASS). Its
near-infrared spectrum shows the 1.6 and 2.2 \micron CH absorption bands
characteristic of T dwarfs, while its common proper motion with the Gl 570ABC
system confirms companionship. Gl 570D (M = 16.470.07) is nearly a
full magnitude dimmer than the only other known T dwarf companion, Gl 229B, and
estimates of L = (2.80.3)x10 L_{\sun} and T = 75050
K make it significantly cooler and less luminous than any other known brown
dwarf companion. Using evolutionary models by Burrows et al. and an adopted age
of 2-10 Gyr, we derive a mass estimate of 5020 M for this object.Comment: 13 pages, 2 figures, 2 tables, accepted by ApJ
The Northern Eurasia Earth Science Partnership: An Example of Science Applied to Societal Needs
Northern Eurasia, the largest landmass in the northern extratropics, accounts for ~20% of the global land area. However, little is known about how the biogeochemical cycles, energy and water cycles, and human activities specific to this carbon-rich, cold region interact with global climate. A major concern is that changes in the distribution of land-based life, as well as its interactions with the environment, may lead to a self-reinforcing cycle of accelerated regional and global warming. With this as its motivation, the Northern Eurasian Earth Science Partnership Initiative (NEESPI) was formed in 2004 to better understand and quantify feedbacks between northern Eurasian and global climates. The first group of NEESPI projects has mostly focused on assembling regional databases, organizing improved environmental monitoring of the region, and studying individual environmental processes. That was a starting point to addressing emerging challenges in the region related to rapidly and simultaneously changing climate, environmental, and societal systems. More recently, the NEESPI research focus has been moving toward integrative studies, including the development of modeling capabilities to project the future state of climate, environment, and societies in the NEESPI domain. This effort will require a high level of integration of observation programs, process studies, and modeling across disciplines
Overview of the Far Ultraviolet Spectroscopic Explorer Mission
The Far Ultraviolet Spectroscopic Explorer satellite observes light in the
far-ultraviolet spectral region, 905 - 1187 A with high spectral resolution.
The instrument consists of four coaligned prime-focus telescopes and Rowland
spectrographs with microchannel plate detectors. Two of the telescope channels
use Al:LiF coatings for optimum reflectivity from approximately 1000 to 1187 A
and the other two use SiC coatings for optimized throughput between 905 and
1105 A. The gratings are holographically ruled to largely correct for
astigmatism and to minimize scattered light. The microchannel plate detectors
have KBr photocathodes and use photon counting to achieve good quantum
efficiency with low background signal. The sensitivity is sufficient to examine
reddened lines of sight within the Milky Way as well as active galactic nuclei
and QSOs for absorption line studies of both Milky Way and extra-galactic gas
clouds. This spectral region contains a number of key scientific diagnostics,
including O VI, H I, D I and the strong electronic transitions of H2 and HD.Comment: To appear in FUSE special issue of the Astrophysical Journal Letters.
6 pages + 4 figure
Academic Performance and Behavioral Patterns
Identifying the factors that influence academic performance is an essential
part of educational research. Previous studies have documented the importance
of personality traits, class attendance, and social network structure. Because
most of these analyses were based on a single behavioral aspect and/or small
sample sizes, there is currently no quantification of the interplay of these
factors. Here, we study the academic performance among a cohort of 538
undergraduate students forming a single, densely connected social network. Our
work is based on data collected using smartphones, which the students used as
their primary phones for two years. The availability of multi-channel data from
a single population allows us to directly compare the explanatory power of
individual and social characteristics. We find that the most informative
indicators of performance are based on social ties and that network indicators
result in better model performance than individual characteristics (including
both personality and class attendance). We confirm earlier findings that class
attendance is the most important predictor among individual characteristics.
Finally, our results suggest the presence of strong homophily and/or peer
effects among university students
- …
