54 research outputs found

    From Cleanroom to Desktop: Emerging Micro-Nanofabrication Technology for Biomedical Applications

    Get PDF
    This review is motivated by the growing demand for low-cost, easy-to-use, compact-size yet powerful micro-nanofabrication technology to address emerging challenges of fundamental biology and translational medicine in regular laboratory settings. Recent advancements in the field benefit considerably from rapidly expanding material selections, ranging from inorganics to organics and from nanoparticles to self-assembled molecules. Meanwhile a great number of novel methodologies, employing off-the-shelf consumer electronics, intriguing interfacial phenomena, bottom-up self-assembly principles, etc., have been implemented to transit micro-nanofabrication from a cleanroom environment to a desktop setup. Furthermore, the latest application of micro-nanofabrication to emerging biomedical research will be presented in detail, which includes point-of-care diagnostics, on-chip cell culture as well as bio-manipulation. While significant progresses have been made in the rapidly growing field, both apparent and unrevealed roadblocks will need to be addressed in the future. We conclude this review by offering our perspectives on the current technical challenges and future research opportunities

    The cowpea chlorotic mottle virus as a building block in nanotechnology

    Get PDF
    Contains fulltext : 74710.pdf (publisher's version ) (Open Access)RU Radboud Universiteit Nijmegen, 5 januari 2010195 p

    A virus-based single enzyme nanoreactor

    Get PDF
    Contains fulltext : 35237.pdf (publisher's version ) (Open Access

    A modular approach to easily processable supramolecular bilayered scaffolds with tailorable properties

    Get PDF
    Engineering of anisotropic tissues demands extracellular matrix (ECM) mimicking scaffolds with an asymmetric distribution of functionalities. We here describe a convenient, modular approach based on supramolecular building blocks to form electrospun bilayered scaffolds with tailorable properties. Polymers and peptides functionalized with hydrogen-bonding ureido-pyrimidinone (UPy) moieties can easily be mixed-and-matched to explore new material combinations with optimal properties. These combinatorial supramolecular biomaterials, processed by electrospinning, enable the formation of modular fibrous scaffolds. We demonstrate how UPy-functionalized polymers based on polycaprolactone and poly(ethylene glycol) enable us to unite both cell-adhesive and non-cell adhesive characters into a single electrospun bilayered scaffold. We furthermore show that the non-cell adhesive layer can be bioactivated and made adhesive for kidney epithelial cells by the incorporation of 4 mol% of UPy-modified Arg-Gly-Asp (RGD) peptide in the electrospinning solution. These findings show that the UPy-based supramolecular biomaterial system offers a versatile toolbox to form modular multilayered scaffolds for tissue engineering and regenerative medicine applications such as the formation of membranes for a living bioartificial kidney

    CCMV-based enzymatic nanoreactors

    No full text
    Protein-based nanoreactors are generated by encapsulating an enzyme inside the capsid of the cowpea chlorotic mottle virus (CCMV). Here, three different noncovalent methods are described to efficiently incorporate enzymes inside the capsid of these viral protein cages. The methods are based on pH, leucine zippers, and electrostatic interactions respectively, as a driving force for encapsulation. The methods are exclusively described for the enzymes horseradish peroxidase, glucose oxidase, and Pseudozyma antarctica lipase B, but they are also applicable for other enzymes
    corecore