22 research outputs found

    Estrogen mediated-activation of miR-191/425 cluster modulates tumorigenicity of breast cancer cells depending on estrogen receptor status.

    Get PDF
    MicroRNAs (miRNAs), single-stranded non-coding RNAs, influence myriad biological processes that can contribute to cancer. Although tumor-suppressive and oncogenic functions have been characterized for some miRNAs, the majority of microRNAs have not been investigated for their ability to promote and modulate tumorigenesis. Here, we established that the miR-191/425 cluster is transcriptionally dependent on the host gene, DALRD3, and that the hormone 17β-estradiol (estrogen or E2) controls expression of both miR-191/425 and DALRD3. MiR-191/425 locus characterization revealed that the recruitment of estrogen receptor α (ERα) to the regulatory region of the miR-191/425-DALRD3 unit resulted in the accumulation of miR-191 and miR-425 and subsequent decrease in DALRD3 expression levels. We demonstrated that miR-191 protects ERα positive breast cancer cells from hormone starvation-induced apoptosis through the suppression of tumor-suppressor EGR1. Furthermore, enforced expression of the miR-191/425 cluster in aggressive breast cancer cells altered global gene expression profiles and enabled us to identify important tumor promoting genes, including SATB1, CCND2, and FSCN1, as targets of miR-191 and miR-425. Finally, in vitro and in vivo experiments demonstrated that miR-191 and miR-425 reduced proliferation, impaired tumorigenesis and metastasis, and increased expression of epithelial markers in aggressive breast cancer cells. Our data provide compelling evidence for the transcriptional regulation of the miR-191/425 cluster and for its context-specific biological determinants in breast cancers. Importantly, we demonstrated that the miR-191/425 cluster, by reducing the expression of an extensive network of genes, has a fundamental impact on cancer initiation and progression of breast cancer cells

    MIR191 (microRNA 191)

    Get PDF
    Review on MIR191 (microRNA 191), with data on DNA, on the protein encoded, and where the gene is implicated

    Let-7a down-regulation plays a role in thyroid neoplasias of follicular histotype affecting cell adhesion and migration through its ability to target the FXYD5 (Dysadherin) gene

    No full text
    CONTEXT:Thyroid neoplasias of the follicular histotype include the benign follicular adenomas and the malignant follicular carcinomas. Although several genetic lesions have already been described in human thyroid follicular neoplasias, the mechanisms underlying their development are still far from being completely elucidated. MicroRNAs (miRs or miRNAs) have recently emerged as important regulators of gene expression, also playing a key role in the process of carcinogenesis. OBJECTIVE: The aim of our work has been to identify the miRNAs differentially expressed in human thyroid follicular neoplasias and define their role in thyroid carcinogenesis. DESIGN: The miRNA expression profile of 10 human thyroid follicular adenomas was compared to that of 10 normal thyroid tissues. RESULTS: The miRNA expression profiles revealed the down-regulation of let-7a in thyroid follicular adenomas compared to normal thyroid. Then, quantitative RT-PCR analyses validated the microarray data and showed a significantly higher decrease in let-7a expression in follicular carcinomas. Enforced let-7a expression in the follicular thyroid carcinoma cell line WRO induces an epithelial-like phenotype, increases cell adhesion, and decreases cell migration. Conversely, silencing of let-7a in the normal rat thyroid cell line PC Cl 3 has opposite effects. We identified dysadherin (FXYD5), a cell membrane glycoprotein, correlated with tumor progression and invasiveness, as a target of let-7a. Consistently, an inverse correlation between dysadherin and let-7a expression levels was found in human thyroid follicular adenomas and carcinomas. CONCLUSIONS: These results suggest a role of let-7a down-regulation in the development of thyroid neoplasias of the follicular histotype, likely regulating dysadherin protein expression levels

    MiR-1 Is a Tumor Suppressor in Thyroid Carcinogenesis Targeting CCND2, CXCR4, and SDF-1{alpha}.

    No full text
    Context: Micro-RNA have emerged as an important class of short endogenous RNA that act as posttranscriptional regulators of gene expression and are constantly deregulated in human cancer. MiR-1 has been found down-regulated in lung, colon, and prostate cancer. Objectives: In this study, we investigated the possible role of miR-1 in thyroid carcinogenesis. Design: We have analyzed miR-1 expression in a panel of thyroid neoplasias including benign and malignant lesions and searched for miR-1 targets

    HMGA1 negatively regulates NUMB expression at transcriptional and post transcriptional level in glioblastoma stem cells

    No full text
    Glioblastoma (GBM) is a lethal, fast-growing brain cancer, affecting 2-3 per 100,000 adults per year. It arises from multipotent neural stem cells which have reduced their ability to divide asymmetrically and hence divide symmetrically, generating increasing number of cancer stem cells, fostering tumor growth. We have previously demonstrated that the architectural transcription factor HMGA1 is highly expressed in brain tumor stem cells (BTSCs) and that its silencing increases stem cell quiescence, reduces self-renewal and sphere-forming efficiency in serial passages, suggesting a shift from symmetric to asymmetric division. Since NUMB expression is fundamental for the fulfillment of asymmetric division in stem cells, and is lost or reduced in many tumors, including GBM, we have investigated the ability of HMGA1 to regulate NUMB expression. Here, we show that HMGA1 negatively regulates NUMB expression at transcriptional level, by binding its promoter and counteracting c/EBP-β and at posttranscriptional level, by regulating the expression of MSI1 and of miR-146a. Finally, we report that HMGA1 knockdown-induced NUMB upregulation leads to the downregulation of the NOTCH1 pathway. Therefore, the data reported here indicate that HMGA1 negatively regulates NUMB expression in BTSCs, further supporting HMGA1 targeting as innovative and effective anti-cancer therapy

    Impact of Tumour Epithelial Subtype on Circulating microRNAs in Breast Cancer Patients

    Get PDF
    While a range of miRNAs have been shown to be dysregulated in the circulation of patients with breast cancer, little is known about the relationship between circulating levels and tumour characteristics. The aim of this study was to analyse alterations in circulating miRNA expression during tumour progression in a murine model of breast cancer, and to detemine the clinical relevance of identified miRNAs at both tissue and circulating level in patient samples. Athymic nude mice received a subcutaneous or mammary fat pad injection of MDA-MB-231 cells. Blood sampling was performed at weeks 1, 3 and 6 following tumour induction, and microRNA extracted. MicroRNA microArray analysis was performed comparing samples harvested at week 1 to those collected at week 6 from the same animals. Significantly altered miRNAs were validated across all murine samples by RQ-PCR (n = 45). Three miRNAs of interest were then quantified in the circulation(n = 166) and tissue (n = 100) of breast cancer patients and healthy control individuals. MicroArray-based analysis of murine blood samples revealed levels of 77 circulating microRNAs to be changed during disease progression, with 44 demonstrating changes >2-fold. Validation across all samples revealed miR-138 to be significantly elevated in the circulation of animals during disease development, with miR-191 and miR-106a levels significantly decreased. Analysis of patient tissue and blood samples revealed miR-138 to be significantly up-regulated in the circulation of patients with breast cancer, with no change observed in the tissue setting. While not significantly changed overall in breast cancer patients compared to controls, circulating miR-106a and miR-191 were significantly decreased in patients with basal breast cancer. In tissue, both miRNAs were significantly elevated in breast cancer compared to normal breast tissue. The data demonstrates an impact of tumour epithelial subtype on circulating levels of miRNAs, and highlights divergent miRNA profiles between tissue and blood samples from breast cancer patients
    corecore