19 research outputs found

    PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis

    Get PDF
    Fibrosis due to extracellular matrix (ECM) secretion from myofibroblasts complicates many chronic liver diseases causing scarring and organ failure. Integrin-dependent interaction with scar ECM promotes pro-fibrotic features. However, the pathological intracellular mechanism in liver myofibroblasts is not completely understood, and further insight could enable therapeutic efforts to reverse fibrosis. Here, we show that integrin beta-1, capable of binding integrin alpha-11, regulates the pro-fibrotic phenotype of myofibroblasts. Integrin beta-1 expression is upregulated in pro-fibrotic myofibroblasts in vivo and is required in vitro for production of fibrotic ECM components, myofibroblast proliferation, migration and contraction. Serine/threonine-protein kinase proteins, also known as P21-activated kinase (PAK), and the mechanosensitive factor, Yes-associated protein 1 (YAP-1) are core mediators of pro-fibrotic integrin beta-1 signalling, with YAP-1 capable of perpetuating integrin beta-1 expression. Pharmacological inhibition of either pathway in vivo attenuates liver fibrosis. PAK protein inhibition, in particular, markedly inactivates the pro-fibrotic myofibroblast phenotype, limits scarring from different hepatic insults and represents a new tractable therapeutic target for treating liver fibrosis

    Epimorphin alters the inhibitory effects of SOX9 on Mmp13 in activated hepatic stellate cells.

    Get PDF
    Liver fibrosis is a major cause of morbidity and mortality. It is characterised by excessive extracellular matrix (ECM) deposition from activated hepatic stellate cells (HSCs). Although potentially reversible, treatment remains limited. Understanding how ECM influences the pathogenesis of the disease may provide insight into novel therapeutic targets for the disease. The extracellular protein Epimorphin (EPIM) has been implicated in tissue repair mechanisms in several tissues, partially, through its ability to manipulate proteases. In this study, we have identified that EPIM modulates the ECM environment produced by activated hepatic stellate cells (HSCs), in part, through down-regulation of pro-fibrotic Sex-determining region Y-box 9 (SOX9).Influence of EPIM on ECM was investigated in cultured primary rat HSCs. Activated HSCs were treated with recombinant EPIM or SOX9 siRNA. Core fibrotic factors were evaluated by immunoblotting, qPCR and chromatin immunoprecipitation (ChIP).During HSC activation EPIM became significantly decreased in contrast to pro-fibrotic markers SOX9, Collagen type 1 (COL1), and α-Smooth muscle actin (α-SMA). Treatment of activated HSCs with recombinant EPIM caused a reduction in α-SMA, SOX9, COL1 and Osteopontin (OPN), while increasing expression of the collagenase matrix metalloproteinase 13 (MMP13). Sox9 abrogation in activated HSCs increased EPIM and MMP13 expression.These data provide evidence for EPIM and SOX9 functioning by mutual negative feedback to regulate attributes of the quiescent or activated state of HSCs. Further understanding of EPIM's role may lead to opportunities to modulate SOX9 as a therapeutic avenue for liver fibrosis

    Enhanced hepatocarcinogenesis in mouse models and human hepatocellular carcinoma by coordinate KLF6 depletion and increased messenger RNA splicing

    No full text
    BACKGROUND: KLF6-SV1 (SV1), the major splice variant of KLF6, antagonizes the KLF6 tumor suppressor by an unknown mechanism. Decreased KLF6 expression in human hepatocellular carcinoma (HCC) correlates with increased mortality, but the contribution of increased SV1 is unknown. We sought to define the impact of SV1 on human outcomes and experimental murine hepatocarcinogenesis, and to elucidate its mechanism of action. RESULTS: In HCV-related HCC, an increased ratio of SV1/KLF6 within the tumor was associated with more features of more advanced disease. Six months after a single injection of diethylnitrosamine (DEN), SV1 hepatocyte transgenic mice developed more histologically advanced tumors, whereas Klf6-depleted mice developed bigger tumors compared to the Klf6fl(+/+) control mice. Nine months after DEN, SV1 transgenic-mice with Klf6-depletion had the greatest tumor burden. Primary mouse hepatocytes from both the SV1 transgenic animals and those with hepatocyte-specific Klf6 depletion displayed increased DNA synthesis, with an additive effect in hepatocytes harboring both SV1 over-expression and Klf6 depletion. Parallel results were obtained by viral SV1-transduction- and depletion of Klf6 through adenovirus-Cre infection of primary Klf6fl(+/+) hepatocytes. Increased DNA synthesis was due to both enhanced cell proliferation and increased ploidy. Co-IP studies in 293T cells uncovered a direct interaction of transfected SV1 with KLF6. Accelerated KLF6 degradation in the presence of SV1 was abrogated by the proteasome inhibitor MG132. CONCLUSION: Increased SV1/KLF6 ratio correlates with more aggressive HCC. In mice, an increased SV1/KLF6 ratio, generated either by increasing SV1, decreasing KLF6, or both, accelerates hepatic carcinogenesis. Moreover, SV1 binds directly to KLF6 and accelerates its degradation. These findings represent a novel mechanism underlying the antagonism of tumor suppressor gene function by a splice variant of the same gene

    Stereotactic body radiation therapy (SBRT) for definitive treatment and as a bridge to liver transplantation in early stage inoperable Hepatocellular carcinoma

    No full text
    Abstract Background and Purpose Stereotactic body radiotherapy (SBRT) is an emerging modality for definitive treatment of Hepatocellular carcinoma (HCC). Materials and Methods This retrospective study included all early stage HCC patients who were not candidates for primary resection and/or local therapy, treated with SBRT between 11/2011 and 1/2016. Results Twenty-three patients were included. The median age was 62 years; 70% males; 30% females; 70% viral hepatitis carriers; 100% cirrhotic; 13 Child Pugh [CP]-A and 10 [CP]-B. The median tumor volume was 12.7cm3 (range, 2.2–53.6 cm3). Treatment was well tolerated. With the exception of one patient who developed RILD, no other patient had significant changes in 12 weeks of laboratory follow-up. SBRT was a bridge to transplantation in 16 patients and 11 were transplanted.. No surgical difficulties or complications were reported following SBRT, and none of the transplanted patients had local progression before transplantation. The median prescribed dose to the tumor was 54Gy (range, 30-54Gy), the median dose to the uninvolved liver was 6.0Gy(range, 1.6–12.6Gy). With a median follow-up time of 12 months, the median overall-survival for the 11 transplanted patients was not reached (range, 2.0–53.7+ months) and was 23 months for the 12 non-transplanted patients. The median progression-free survival for the transplanted patients was not reached (54+ months) and was 14.0 months for the non-transplanted patients. There was no SBRT-related mortality. Liver explant post SBRT revealed pathological complete response in 3(27.3%), pathological partial response in 6(54.5%), and pathological stable disease in 2(18.2%) tumors. Conclusions SBRT is safe and effective and can be used as a bridge to transplantation without comprising the surgical procedure
    corecore