1,313 research outputs found

    INSTITUTIONAL AFFILIATION OF AUTHORS IN THE AMERICAN JOURNAL OF AGRICULTURAL ECONOMICS, 1988-1992

    Get PDF
    Opaluch and Just reported the top 20 departments in pages per faculty of articles in the American Journal of Agricultural Economics for the five year period 1968-1972. To determine how much has changed and how much has not during the intervening two decades, the analysis was repeated for the five year period 1988-1992. Some things seem not to change. University of California, Berkeley, remains at the pinnacle twenty years later. And 13 of the top 20 departments two decades ago, remain there during the 1988-1992 period. But seven did change, and the most notable aspect is that the number of Northeast departments in the top 20 rose from two to five.Teaching/Communication/Extension/Profession,

    On Quantum Algorithms

    Get PDF
    Quantum computers use the quantum interference of different computational paths to enhance correct outcomes and suppress erroneous outcomes of computations. In effect, they follow the same logical paradigm as (multi-particle) interferometers. We show how most known quantum algorithms, including quantum algorithms for factorising and counting, may be cast in this manner. Quantum searching is described as inducing a desired relative phase between two eigenvectors to yield constructive interference on the sought elements and destructive interference on the remaining terms.Comment: 15 pages, 8 figure

    Discrete-query quantum algorithm for NAND trees

    Full text link
    Recently, Farhi, Goldstone, and Gutmann gave a quantum algorithm for evaluating NAND trees that runs in time O(sqrt(N log N)) in the Hamiltonian query model. In this note, we point out that their algorithm can be converted into an algorithm using O(N^{1/2 + epsilon}) queries in the conventional quantum query model, for any fixed epsilon > 0.Comment: 2 pages. v2: updated name of one autho

    Discrete-Query Quantum Algorithm for NAND Trees

    Get PDF
    This is a comment on the article “A Quantum Algorithm for the Hamiltonian NAND Tree” by Edward Farhi, Jeffrey Goldstone, and Sam Gutmann, Theory of Computing 4 (2008) 169--190. That paper gave a quantum algorithm for evaluating NAND trees with running time O(√N) in the Hamiltonian query model. In this note, we point out that their algorithm can be converted into an algorithm using N^[1/2 + o(1)] queries in the conventional (discrete) quantum query model

    Exponential improvement in precision for simulating sparse Hamiltonians

    Full text link
    We provide a quantum algorithm for simulating the dynamics of sparse Hamiltonians with complexity sublogarithmic in the inverse error, an exponential improvement over previous methods. Specifically, we show that a dd-sparse Hamiltonian HH acting on nn qubits can be simulated for time tt with precision ϵ\epsilon using O(τlog(τ/ϵ)loglog(τ/ϵ))O\big(\tau \frac{\log(\tau/\epsilon)}{\log\log(\tau/\epsilon)}\big) queries and O(τlog2(τ/ϵ)loglog(τ/ϵ)n)O\big(\tau \frac{\log^2(\tau/\epsilon)}{\log\log(\tau/\epsilon)}n\big) additional 2-qubit gates, where τ=d2Hmaxt\tau = d^2 \|{H}\|_{\max} t. Unlike previous approaches based on product formulas, the query complexity is independent of the number of qubits acted on, and for time-varying Hamiltonians, the gate complexity is logarithmic in the norm of the derivative of the Hamiltonian. Our algorithm is based on a significantly improved simulation of the continuous- and fractional-query models using discrete quantum queries, showing that the former models are not much more powerful than the discrete model even for very small error. We also simplify the analysis of this conversion, avoiding the need for a complex fault correction procedure. Our simplification relies on a new form of "oblivious amplitude amplification" that can be applied even though the reflection about the input state is unavailable. Finally, we prove new lower bounds showing that our algorithms are optimal as a function of the error.Comment: v1: 27 pages; Subsumes and improves upon results in arXiv:1308.5424. v2: 28 pages, minor change

    Efficient discrete-time simulations of continuous-time quantum query algorithms

    Full text link
    The continuous-time query model is a variant of the discrete query model in which queries can be interleaved with known operations (called "driving operations") continuously in time. Interesting algorithms have been discovered in this model, such as an algorithm for evaluating nand trees more efficiently than any classical algorithm. Subsequent work has shown that there also exists an efficient algorithm for nand trees in the discrete query model; however, there is no efficient conversion known for continuous-time query algorithms for arbitrary problems. We show that any quantum algorithm in the continuous-time query model whose total query time is T can be simulated by a quantum algorithm in the discrete query model that makes O[T log(T) / log(log(T))] queries. This is the first upper bound that is independent of the driving operations (i.e., it holds even if the norm of the driving Hamiltonian is very large). A corollary is that any lower bound of T queries for a problem in the discrete-time query model immediately carries over to a lower bound of \Omega[T log(log(T))/log (T)] in the continuous-time query model.Comment: 12 pages, 6 fig

    Fast quantum algorithm for numerical gradient estimation

    Full text link
    Given a blackbox for f, a smooth real scalar function of d real variables, one wants to estimate the gradient of f at a given point with n bits of precision. On a classical computer this requires a minimum of d+1 blackbox queries, whereas on a quantum computer it requires only one query regardless of d. The number of bits of precision to which f must be evaluated matches the classical requirement in the limit of large n.Comment: additional references and minor clarifications and corrections to version

    Simulating Hamiltonian dynamics with a truncated Taylor series

    Get PDF
    We describe a simple, efficient method for simulating Hamiltonian dynamics on a quantum computer by approximating the truncated Taylor series of the evolution operator. Our method can simulate the time evolution of a wide variety of physical systems. As in another recent algorithm, the cost of our method depends only logarithmically on the inverse of the desired precision, which is optimal. However, we simplify the algorithm and its analysis by using a method for implementing linear combinations of unitary operations to directly apply the truncated Taylor series.Comment: 5 page

    Depth-Independent Lower bounds on the Communication Complexity of Read-Once Boolean Formulas

    Full text link
    We show lower bounds of Ω(n)\Omega(\sqrt{n}) and Ω(n1/4)\Omega(n^{1/4}) on the randomized and quantum communication complexity, respectively, of all nn-variable read-once Boolean formulas. Our results complement the recent lower bound of Ω(n/8d)\Omega(n/8^d) by Leonardos and Saks and Ω(n/2Ω(dlogd))\Omega(n/2^{\Omega(d\log d)}) by Jayram, Kopparty and Raghavendra for randomized communication complexity of read-once Boolean formulas with depth dd. We obtain our result by "embedding" either the Disjointness problem or its complement in any given read-once Boolean formula.Comment: 5 page

    Exponential algorithmic speedup by quantum walk

    Full text link
    We construct an oracular (i.e., black box) problem that can be solved exponentially faster on a quantum computer than on a classical computer. The quantum algorithm is based on a continuous time quantum walk, and thus employs a different technique from previous quantum algorithms based on quantum Fourier transforms. We show how to implement the quantum walk efficiently in our oracular setting. We then show how this quantum walk can be used to solve our problem by rapidly traversing a graph. Finally, we prove that no classical algorithm can solve this problem with high probability in subexponential time.Comment: 24 pages, 7 figures; minor corrections and clarification
    corecore