46 research outputs found

    Integrative molecular analysis of combined small-cell lung carcinomas identifies major subtypes with different therapeutic opportunities

    Get PDF
    Background: Combined small-cell lung cancer (C-SCLC) is composed of SCLC admixed with a non-small-cell cancer component. They currently receive the same treatment as SCLC. The recent evidence that SCLC may belong to either of two lineages, neuroendocrine (NE) or non-NE, with different vulnerability to specific cell death pathways such as ferroptosis, opens new therapeutic opportunities also for C-SCLC. Materials and methods: Thirteen C-SCLCs, including five with adenocarcinoma (CoADC), five with large-cell neuroendocrine carcinoma (CoLCNEC) and three with squamous cell carcinoma (CoSQC) components, were assessed for alterations in 409 genes and transcriptomic profiling of 20 815 genes. Results: All 13 cases harbored TP53 (12 cases) and/or RB1 (7 cases) inactivation, which was accompanied by mutated KRAS in 4 and PTEN in 3 cases. Potentially targetable alterations included two KRAS G12C, two PIK3CA and one EGFR mutations. Comparison of C-SCLC transcriptomes with those of 57 pure histology lung cancers (17 ADCs, 20 SQCs, 11 LCNECs, 9 SCLCs) showed that CoLCNEC and CoADC constituted a standalone group of NE tumors, while CoSQC transcriptional setup was overlapping that of pure SQC. Using transcriptional signatures of NE versus non-NE SCLC as classifier, CoLCNEC was clearly NE while CoSQC was strongly non-NE and CoADC exhibited a heterogeneous phenotype. Similarly, using ferroptosis sensitivity/resistance markers, CoSQC was classified as sensitive (as expected for non-NE), CoLCNEC as resistant (as expected for NE) and CoADC showed a heterogeneous pattern. Conclusions: These data support routine molecular profiling of C-SCLC to search for targetable driver alterations and to precisely classify them according to therapeutically relevant subgroups (e.g. NE versus non-NE)

    Clinical implications of thymidylate synthetase, dihydropyrimidine dehydrogenase and orotate phosphoribosyl transferase activity levels in colorectal carcinoma following radical resection and administration of adjuvant 5-FU chemotherapy

    Get PDF
    <p>Abstract</p> <p>Bckground</p> <p>A number of studies have investigated whether the activity levels of enzymes involved in 5-fluorouracil (5-FU) metabolism are prognostic factors for survival in patients with colorectal carcinoma. Most reports have examined thymidylate synthetase (TS) and dihydropyrimidine dehydrogenase (DPD) in unresectable or metastatic cases, therefore it is unclear whether the activity of these enzymes is of prognostic value in colorectal cancer patients treated with radical resection and adjuvant chemotherapy with 5-FU.</p> <p>Methods</p> <p>This study examined fresh frozen specimens of colorectal carcinoma from 40 patients who had undergone curative operation and were orally administered adjuvant tegafur/uracil (UFT) chemotherapy. TS, DPD and orotate phosphoribosyl transferase (OPRT) activities were assayed in cancer tissue and adjacent normal tissue and their association with clinicopathological variables was investigated. In addition, the relationships between TS, DPD and OPRT activities and patient survival were examined to determine whether any of these enzymes could be useful prognostic factors.</p> <p>Results</p> <p>While there was no clear relationship between pathological findings and TS or DPD activity, OPRT activity was significantly lower in tumors with lymph node metastasis than in tumors lacking lymph node metastasis. Postoperative survival was significantly better in the groups with low TS activity and/or high OPRT activity.</p> <p>Conclusion</p> <p>TS and OPRT activity levels in tumor tissue may be important prognostic factors for survival in Dukes' B and C colorectal carcinoma with radical resection and adjuvant chemotherapy with UFT.</p

    Combined Large Cell Neuroendocrine Carcinomas of the Lung: Integrative Molecular Analysis Identifies Subtypes with Potential Therapeutic Implications

    Get PDF
    Simple Summary In this manuscript, we offer an integrated molecular analysis of 44 combined large cell neuroendocrine carcinomas (CoLCNECs) in order to deepen the knowledge about these rare histotypes and to clarify their relationship with lung cancers. In the present state of research, molecular studies are still scant, consisting of small and heterogeneous cohorts, and the genomic landscape is poorly characterized. This study shows that CoLCNECs constitute a standalone group of neuroendocrine neoplasm, with three different molecular profiles, two of which overlap with pure LCNEC or adenocarcinoma. CoLCNECs can be considered an independent histologic category with specific genomic and transcriptomic features, different and therefore not comparable to other lung cancers. Indeed, in addition to a histological re-evaluation of lung cancer classification, our study may help to develop a new diagnostic approach for novel and personalized treatments in CoLCNECs. Background: Combined large cell neuroendocrine carcinoma (CoLCNEC) is given by the association of LCNEC with adeno or squamous or any non-neuroendocrine carcinoma. Molecular bases of CoLCNEC pathogenesis are scant and no standardized therapies are defined. Methods: 44 CoLCNECs: 26 with adenocarcinoma (CoADC), 7 with squamous cell carcinoma (CoSQC), 3 with small cell carcinoma (CoSCLC), 4 with atypical carcinoid (CoAC) and 4 napsin-A positive LCNEC (NapA+), were assessed for alterations in 409 genes and transcriptomic profiling of 20,815 genes. Results: Genes altered included TP53 (n = 30), RB1 (n = 14) and KRAS (n = 13). Targetable alterations included six KRAS G12C mutations and ALK-EML4 fusion gene. Comparison of CoLCNEC transcriptomes with 86 lung cancers of pure histology (8 AC, 19 ADC, 19 LCNEC, 11 SCLC and 29 SQC) identified CoLCNEC as a separate entity of neuroendocrine tumours with three different molecular profiles, two of which showed a non-neuroendocrine lineage. Hypomethylation, activation of MAPK signalling and association to immunotherapy signature specifically characterized each of three CoLCNEC molecular clusters. Prognostic stratification was also provided. Conclusions: CoLCNECs are an independent histologic category. Our findings support the extension of routine evaluation of KRAS mutations, fusion genes and immune-related markers to offer new perspectives in the therapeutic management of CoLCNEC

    BORIS, a paralogue of the transcription factor, CTCF, is aberrantly expressed in breast tumours

    Get PDF
    BORIS (for brother of the regulator of imprinted sites), a paralogue of the transcription factor, CTCF, is a novel member of the cancer-testis antigen family. The aims of the present study were as follows: (1) to investigate BORIS expression in breast cells and tumours using immunohistochemical staining, western and real-time RT–PCR analyses and (2) assess potential correlation between BORIS levels in tumours with clinical/pathological parameters. BORIS was detected in all 18 inspected breast cell lines, but not in a primary normal breast cell culture. In 70.7% (41 of 58 cases) BORIS was observed in breast tumours. High levels of BORIS correlated with high levels of progesterone receptor (PR) and oestrogen receptor (ER). The link between BORIS and PR/ER was further confirmed by the ability of BORIS to activate the promoters of the PR and ER genes in the reporter assays. Detection of BORIS in a high proportion of breast cancer patients implies potential practical applications of BORIS as a molecular biomarker of breast cancer. This may be important for diagnosis of the condition and for the therapeutic use of BORIS. The ability of BORIS to activate promoters of the RP and ER genes points towards possible involvement of BORIS in the establishment, progression and maintenance of breast tumours

    Predictors of survival and toxicity in patients on adjuvant therapy with 5-fluorouracil for colorectal cancer

    Get PDF
    The present study aimed at investigating whether the simultaneous evaluation of pharmacokinetic, pharmacogenetic and demographic factors could improve prediction on toxicity and survival in colorectal cancer patients treated with adjuvant 5-fluorouracil (5FU)/leucovorin therapy. One hundred and thirty consecutive, B2 and C Duke's stage colorectal cancer patients were prospectively enrolled. 5FU pharmacokinetics was evaluated at the first cycle. Thymidylate synthase (TYMS) 5′UTR and 3′UTR polymorphisms and methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms were assessed in peripheral leukocytes. Univariate and multivariate analyses were applied to evaluate which variables could predict chemotherapy-induced toxicity, disease-free survival (DFS) and overall survival (OS). Multivariate analysis showed that: (a) low 5FU clearance was an independent predictive factor for severe toxicity (OR=7.32; P<0.0001); (b) high-5FU clearance predicted poorer DFS (HR=1.96; P=0.041) and OS (HR=3.37; P=0.011); (c) advanced age was associated with shorter DFS (HR=3.34; P=0.0008) and OS (HR=2.66; P=0.024); (d) the C/C genotype of the MTHFR C677T polymorphism was protective against grade 3–4 toxicity (P=0.040); (e) none of the TYMS polymorphisms could explain 5FU toxicity or clinical outcome

    Treatment of hepatocellular carcinoma with major portal vein thrombosis by combined therapy with subcutaneous interferon-α and intra-arterial 5-fluorouracil; role of type 1 interferon receptor expression

    Get PDF
    We previously reported the beneficial effects of combination therapy of interferon (IFN)-α/5-fluorouracil (FU) for advanced hepatocellular carcinoma (HCC) with tumour thrombi in the major portal branches. This report describes the results of longer follow-up and includes more than double the number of patients relative to the original report, and evaluates the role of IFN-α/type 2 interferon receptor (IFNAR2) expression on the response to the combination therapy. The study subjects were 55 patients with advanced HCC and tumour thrombi in the major branches of the portal vein (Vp3 or 4). They were treated with at least two courses of IFN-α/5-FU without major complication. In the 55 patients, 24 (43.6%) showed objective response (eight (14.5%) showed complete response, 16 (29.1%) partial response), four (7.3%) showed no response, and 27 (49.1%) showed progressive disease. Immunohistochemically, IFNAR2 expression was detected in nine out of 13 (69.2%) patients. There was significant difference in the time-to-progression survival (P=0.0002) and the overall survival (P<0.0001) between IFNAR2-positive and -negative cases. There was a significant correlation between IFNAR2 expression and response to IFN-α/5-FU combination therapy in univariate analysis (P=0.0070). IFN-α/5-FU combination therapy is a promising modality for advanced HCC with tumour thrombi in the major portal branches and could significantly depend on IFNAR2 expression

    A comparative analysis of multi-backbone Mask R-CNN for surgical tools detection

    No full text
    Real-time surgical tool segmentation and tracking based on convolutional neural networks (CNN) has gained increasing interest in the field of mini-invasive surgery. In fact, the application of this novel artificial vision technologies allows both to reduce surgical risks and to increase patient safety. Moreover, these types of models can be used both to track the tools and detect markers or external artefacts in a real-time video stream. Multiple object detection and instance segmentation can be addressed efficiently by leveraging region-based CNN models. Thus, this work provides a comparison among state-of-the-art multi-backbone Mask R-CNNs to solve these tasks. Moreover, we show that such models can serve as a basis for tracking algorithms. The models were trained and tested with a data-set of 4955 manually annotated images, validated by 3 experts in the field. We tested 12 different combinations of CNN backbones and training hyperparameters. The results show that it is possible to employ a modern CNN to tackle the surgical tool detection problem, with the best-performing Mask R-CNN configuration achieving 87% Average Precision (AP) at Intersection over Union (IOU) 0.5
    corecore