1,546 research outputs found
Innovative design of composite structures: The use of curvilinear fiber format in composite structure design
The gains in structural efficiency are investigated that can be achieved by aligning the fibers in some or all of the layers in a laminate with the principal stress directions in those layers. The name curvilinear fiber format is given to this idea. The problem studied is a plate with a central circular hole subjected to a uniaxial tensile load. An iteration scheme is used to find the fiber directions at each point in the laminate. Two failure criteria are used to evaluate the tensile load capacity of the plates with a curvilinear format, and for comparison, counterpart plates with a conventional straightline fiber format. The curvilinear designs for improved tensile capacity are then checked for buckling resistance. It is concluded that gains in efficiency can be realized with the curvilinear format
McShane-type Identities for Affine Deformations
We derive an identity for Margulis invariants of affine deformations of a
complete orientable one-ended hyperbolic sur- face following the identities of
McShane, Mirzakhani and Tan- Wong-Zhang. As a corollary, a deformation of the
surface which infinitesimally lengthens all interior simple closed curves must
in- finitesimally lengthen the boundary.Comment: resubmitted after error revising another submissio
Innovative design of composite structures: Use of curvilinear fiber format to improve structural efficiency
To increase the effectiveness and efficiency of fiber-reinforced materials, the use of fibers in a curvilinear rather than the traditional straightline format is explored. The capacity of a laminated square plate with a central circular hole loaded in tension is investigated. The orientation of the fibers is chosen so that the fibers in a particular layer are aligned with the principle stress directions in that layer. Finite elements and an iteration scheme are used to find the fiber orientation. A noninteracting maximum strain criterion is used to predict load capacity. The load capacities of several plates with different curvilinear fibers format are compared with the capacities of more conventional straightline format designs. It is found that the most practical curvilinear design sandwiches a group of fibers in a curvilinear format between a pair of +/-45 degree layers. This design has a 60% greater load capacity than a conventional quasi-isotropic design with the same number of layers. The +/-45 degree layers are necessary to prevent matrix cracking in the curvilinear layers due to stresses perpendicular to the fibers in those layers. Greater efficiencies are achievable with composite structures than now realized
The first successful use of the Levitronix PediMag ventricular support device as a biventricular bridge to transplant in an infant
Numeración errónea en el original, se ha corregido
The Formal Dynamism of Categories: Stops vs. Fricatives, Primitivity vs. Simplicity
Minimalist Phonology (MP; Pöchtrager 2006) constructs its theory based on the phonological epistemological principle (Kaye 2001) and exposes the arbitrary nature of standard Government Phonology (sGP) and strict-CV (sCV), particularly with reference to their confusion of melody and structure.
For Pöchtrager, these are crucially different, concluding that place of articulation is melodic (expressed with elements), while manner of articulation is structural. In this model, the heads (xN and xO) can license and incorporate the length of the other into their own interpretation, that is xN influences xO projections as well as its own and vice versa. This dynamism is an aspect of the whole framework and this paper in particular will show that stops and fricatives evidence a plasticity of category and that, although fricatives are simpler in structure, stops are the more primitive of the two.
This will be achieved phonologically through simply unifying the environment of application of the licensing forces within Pöchtrager's otherwise sound onset structure. In doing so, we automatically make several predictions about language acquisition and typology and show how lenition in Qiang (Sino-Tibetan) can be more elegantly explained
Relationship between water and aragonite barium concentrations in aquaria reared juvenile corals
This paper is not subject to U.S. copyright. The definitive version was published in Geochimica et Cosmochimica Acta 209 (2017): 123-134, doi:10.1016/j.gca.2017.04.006.Coral barium to calcium (Ba/Ca) ratios have been used to reconstruct records of upwelling, river and groundwater discharge, and sediment and dust input to the coastal ocean. However, this proxy has not yet been explicitly tested to determine if Ba inclusion in the coral skeleton is directly proportional to seawater Ba concentration and to further determine how additional factors such as temperature and calcification rate control coral Ba/Ca ratios. We measured the inclusion of Ba within aquaria reared juvenile corals (Favia fragum) at three temperatures (∼27.7, 24.6 and 22.5 °C) and three seawater Ba concentrations (73, 230 and 450 nmol kg−1). Coral polyps were settled on tiles conditioned with encrusting coralline algae, which complicated chemical analysis of the coral skeletal material grown during the aquaria experiments. We utilized Sr/Ca ratios of encrusting coralline algae (as low as 3.4 mmol mol−1) to correct coral Ba/Ca for this contamination, which was determined to be 26 ± 11% using a two end member mixing model. Notably, there was a large range in Ba/Ca across all treatments, however, we found that Ba inclusion was linear across the full concentration range. The temperature sensitivity of the distribution coefficient is within the range of previously reported values. Finally, calcification rate, which displayed large variability, was not correlated to the distribution coefficient. The observed temperature dependence predicts a change in coral Ba/Ca ratios of 1.1 μmol mol−1 from 20 to 28 °C for typical coastal ocean Ba concentrations of 50 nmol kg−1. Given the linear uptake of Ba by corals observed in this study, coral proxy records that demonstrate peaks of 10–25 μmol mol−1 would require coastal seawater Ba of between 60 and 145 nmol kg−1. Further validation of the coral Ba/Ca proxy requires evaluation of changes in seawater chemistry associated with the environmental perturbation recorded by the coral as well as verification of these results for Porites species, which are widely used in paleo reconstructions.M.E.G. was supported by a NDSEG graduate fellowship. Funding for this research came from the NSF Chemical Oceanography program (OCE-0751525) and the Coastal Ocean Institute, the Ocean and Climate Change Institute and the Ocean Ventures Fund at Woods Hole Oceanographic Institution
- …
