192 research outputs found

    Frequency-dependent anti arrhythmic effects of crataegus monogyna on the extracellular field potential recordings in the rabbit atrioventricular node, an experimental model of AF

    Get PDF
    Introduction: Despite extensive studies that have been performed on the effects of Crataegus monogyna in cardiovascular diseases, only few investigations have addressed the antiarrhythmic properties of this plant. Aims of the present study were: 1) To determine the protective role of methanolic extract of C. monogyna on the rate-dependent model and the concealed conduction of the AV node. 2) To explore the role of Na+-K+ ATPase in the protective role of C. monogyna Methods: Male New Zealand rabbits (1.5-2kg) were used in all experiments. Stimulation protocols were used to measure basic and rate-dependent AV nodal properties (recovery, atrial fibrilation and zone of concealment) in two groups (N=14). In the first group, all the stimulation protocols were performed before and after the administration of different concentrations of C. monogyna extract (n=7), while in the second group (n=7), all stimulation protocols were carried out in the presence of ouabaine (0.05 μM) and the plant extract. Results: Basic and rate-dependent properties of the AV node were inhibited after the addition of the extract of C. monogyna to Kerebs Henselite solution. At the maximum concentration of C. monogyna (30 mg/l), WBCL cycle length was significantly increased from 156.5±3.4 to 173±5.8 ms and the nodal functional refractory period was prolonged from 164.4±4.1 to 182.7±3.8 ms (P<0.05). Significant decreases of ventricular rhythm were recorded in both selective concentrations of the plant extract. The depressant electrophysiological effect of C. monogyna on the AV node was not abolished by ouabaine, a selective inhibitor of Na+-K+ ATPase enzyme. Conclusion: The results showed a potential anti-arrhythmic and protective effect for C. monogyna. The effect of the plant extract in increasing nodal refractory period and widening of the concealment zone might be the major mechanisms involved. The protective role of C. monogyna was not related to the Na+-K+ ATPase activity

    Age-dependent dynamic electrophysiological field potential behavior of atrioventricular node during experimental AF in rabbit

    Get PDF
    Introduction: Electrophysiological studies have demonstrated a relationship between aging and atrioventricular (AV) nodal conduction and refractoriness. The aim of the present study was to determine the effects of nodal aging on dynamic AV nodal field potential recording during atrial fibrillation (AF) in rabbit. Methods: Two groups of male New Zealand rabbits (neonatal 2-week-olds and adult 12-week-olds, n=14 each group) were used in this study. Field potential recordings were executed by silver electrodes with a diameter of 100 μM. Pre-defined stimulation protocols of AF, zone of concealment (ZOC) and concealed conduction for determination of the electrophysiological properties of the AV-node were separately applied in each group. Results: Results of the study showed that mean ventricular rate (HH) during atrial fibrillation was smaller in the neonatal compared to the adult group (229.1 ± 8.3 versus 198.6 ± 13.1 msec, respectively). Also ventricular distribution conduction pattern showed two peaks in the adult and one peak in the neonatal group. Analyzing the zone of concealment in different rates and after concealed beat indicated that the zone of concealment in neonates were significantly smaller compared with adult rabbits and increasing zone of concealment, which is accompanied with increasing ventricular rate is abrogated in the neonatal group (5 ± 3.3, 12.2 ± 6.3 msec). Conclusion: The results of this study showed that the electrophysiological protective dynamic behavior of the AV node during atrial fibrillation is smaller in neonates compared to adults. Narrower zone of concealment, abrogation rate dependent trend of the zone of concealment and shorter nodal refractoriness can account for the specific nodal electrophysiological properties of neonatal rabbits

    Synergistic Apoptotic Effect of Crocin and Paclitaxel or Crocin and Radiation on MCF-7 Cells, a Type of Breast Cancer Cell Line

    Get PDF
    Background. Chemotherapy, radiotherapy, and surgery are routine treatments of breast cancer. However, these methods could only improve the living survival. Nowadays the combined therapy including herbals such as crocin is to study for improving breast cancer treatment. The purpose of this study was to evaluate the effects of crocin, paclitaxel, and radiation on MCF-7 cell. Methods. To evaluate the effect of crocin, paclitaxel, and radiation on survival rate of MCF-7 cells MTT assay was done. To investigate the apoptotic effect of experimental groups PI-flow cytometry was used and expression of apoptotic proteins (caspase-7, caspase-9, PARP, and p53) was studied by western blot. Results. This study revealed that the combined therapy of 0.01μmol/mL paclitaxel and 2.5 mg/mL crocin after 48 h could cause IC50 for MCF-7 cell line. This study showed that the combined therapy of 2 Gy gamma radiation with crocin could rise apoptosis in MCF-7 cell line from 21 (related to using 2 Gy gamma radiation alone) to 46.6. Conclusion. Crocin and paclitaxel and crocin and gamma radiation had synergistic effect on MCF-7 cell line to get more significant apoptosis. © 2015 Faeze Vali et al

    Rate-dependent and antiarrhythmic reentrant tachycardia (AVNRT) effects of simvastatin in isolated rabbit atrioventricular nodal model

    Get PDF
    Background and purpose: Several previous studies have shown the direct and indirect effects of statins on supraventricular and ventricular arrhythmia. The purpose of the present study is to determine (1) whether Simvastatin modifies the rate-dependent properties of the AV node, (2) to what extent such changes are related to effect of Simvastatin on the basic properties of AV nodal conduction and refractoriness. Materials and methods: AV nodal refractoriness (AVERP & AVFRP) and rate dependency protocols Fatigue and Facilitation were used to assesse the electrophysiological properties of AV node. We used an isolated perfussed rabbit with AV nodal preparation in one group (N=8). The stimulation protocols were carried out during control phase and in the presence of various concentrations of Simvastatin (0.5 , 0.8 , 1, 3 ,10 μm). Results: Simvastatin in concentration-dependent manner successfully prolonged effective and functional nodal refractory period (AVERP & AVFRP). Also an increase in Wenckebach cycle length was observed. Simvastatin in high concentration (3,10 μm) increases the arrhythmia threshold. Various concentrations of simvastatin increased fatigue, but it reached to significant level only at 30 μM. Conclusion: Simvastatin has potential anti-AVNRT effects by elevating arrhythmia threshold and prolongation of nodal refractoriness

    Protective role of cyclosporine on the model simulated the rotational nodal arrhythmia (AVNRT) by using extracellular field potential recordings of isolated atrioventricular-node of rabbit

    Get PDF
    Introduction: Recent studies have shown acute cardioprotective effects of cyclosporine. The aim of the present study was to determine the protective role of cyclosporine on the model simulated the rotational nodal arrhythmia (AVNRT) by using extracellular field potential recordings of isolated atrioventricular-node (AV-node) of rabbit. Methods: This study was performed on isolated double-perfused AV-node of male New Zealand rabbits (1.5-2.5 kg) in one group (n=7). Basic and rate-dependent stimulation protocols (recovery, facilitation, fatigue) and arrhythmia threshold (index of refractoriness) and % Gap incidence were measured for assessment of electrophysiological properties of the AV- node. All stimulation protocols were repeated in control step and in the presence of various cumulative concentrations of cyclosporine (0.5 - 10 μm). Results: Cyclosporine prolonged the effective refractory period from 114.3±7.9 to 142±7.3 msec at the concentration of 10 μm. It also prolonged the functional refractory period from 162±3.3 to 178.6±5 msec and increased the time of Wenckebach at the concentrations of 5 - 10 μM. Various concentrations of cyclosporine increased fatigue and reached a significant level at 10 μm. Gap incidence was 82%, 16.6% and 20% in the control and treatments with 0.5 and 10 μm of cyclosporine, respectively. Conclusion: Block of MPTP by cyclosporine caused inhibition of basic and rate-dependent properties of atrioventricular node. Cyclosporine, by raising the threshold of arrhythmia, could be possibly considered as an anti- AVNRT drug

    Role of nitric oxide on the electrophysiological properties of isolated rabbit atrioventricular node by extracellular field potential during atrial fibrillation

    Get PDF
    Introduction: The aim of the present study was to determine direct effects of NO modulation on protective electrophysiological properties of atrioventricular node (AV node) in the experimental model of AF in rabbit. Methods: Isolated perfused rabbit AV nodal preparations were used in two groups. In the first group (N=7), LNAME (50μM) was applied. In the second group (N=12), different concentrations of L - argenine (250 μM - 5000 μM) were added to the solution. Programmed stimulation protocols were used to quantify AV nodal conduction time, refractoriness and zone of concealment. AF protocol was executed by software with coupling intervals (ranging from 75–125 msec). Results: L-NAME had depressive effects on basic AV nodal properties. L-Arginine (250μM) had direct inhibitory effects on nodal conduction time, Wenckebach and refractoriness. Significant increases in the number of concealed beats were induced by L-Arginine (500 μM). Number of concealed beats were increased from 700.7±33.7 to 763±21 msec (P<0.05). Trend of zone of concealment prolongation in a frequency-dependent model was abrogated by Larginine (250, 5000 μM). Conclusion: NO at low concentration (in the presence of L-NAME) had facilitatory role on AV nodal properties, but at high concentration (in the presence of L-arginine) enhanced protective role of AV node during AF. Biphasic modulatory role of NO may affect protective behavior of AV node during AF. © 2011, Iranian Society of Physiology and Pharmacology. All rights reserved

    Effect of nitric oxide modulation on the basic and rate-dependent electrophysiological properties of AV-node in the isolated heart of rabbit: The role of adrenergic and cholinergic receptors

    Get PDF
    Introduction: Recent studies showed that nitrergic system have specific modulatory effects on electrophysiological properties of atrioventricular (AV) node. The aim of this study was to determine the effects of nitric oxide (NO) on the electrophysiological properties of isolated rabbit AV node and to investigate the role of adrenergic and cholinergic receptors in the mechanism of its action. Methods: In our laboratory, an experimental model of isolated double-perfused AV-node of rabbits weighing 1.5-2 kg was used. Specific experimental protocols of recovery, Facilitation, Fatigue and Wenckbach were applied in both control and in the presence of the drug. A total number of 35 rabbits were divided randomly into the following groups (n=7): 1) L-Arg (NO donor) (250, 750 and 1000 μmol), 2) L- NAME, a NO synthesis inhibitor (25, 50 and 100 μmol), 3) L-Arg + L- NAME, 4) Nadolol (1 μmol), 5) Atropine (3 μmol). All data were shown as mean ± SE. The level of statistical significance was set at p<0.05. Results: Our results revealed the depressant effect of L-Arg on the basic and rate-dependent electrophysiological properties of AV-node. L- NAME did not deteriorate the effects of L-Arg on the basic and rate-dependent properties, nevertheless, at high concentration (100 μmol) it had a direct inhibitory effect on the AV-node. Nadolol and atropine could prevent the effects of NO on the basic nodal characteristics and the fatigue phenomenon, respectively. Conclusion: Nitergic system can affect basic and rate-dependent electrophysiological properties of the AV-node through adrenergic and cholinergic receptors

    Species identification reveals mislabeling of important fish products in Iran by DNA barcoding

    Get PDF
    This study reports on the molecular identification of fish species from processed products which had a priori been classified as belonging to 5 important species in Iran for human consumption. DNA barcoding using direct sequencing of an approximately 650bp of mitochondrial Cytochrome oxidase subunit I (COI) gene revealed incorrect labeling of Narrow-barred Spanish mackerel samples. High occurrence of fraudulent fishery products, if left unchecked, can pose a negative impact on the economy. This investigation adds further concern on the trading of processed fish products in Iran from both health and conservation points of view

    Application of computed aided detection in breast masses diagnosis

    Get PDF
    Breast cancer is the most widespread cancer in women. The life-time risk of a woman developing this disease has been established as one in eight. Currently mammography is a standard method and could decrease breast cancer mortality. Unfortunately, negative mammograms don\u2032t exclude cancer. The sensitivity of mammography ranges from approximately 70% to 90% and it should be higher. Materials and Methods: The sample contained 255 cases taken from Imaging Center of Imam Khomaini Hospital. Bilateral mammograms in both craniocaudal and mediolateral oblique projections were used. Two experienced Radiologists reviewed images before and after using CAD system. Tumors (including malignant and benign) and normal breast tissues were confirmed by histological correlation. Results: Of 255 cases 92 were not recommended for further work-up. Of 163 cases 90 were normal mass, 23 malignant tumors, 16 benign tumors and 22 cysts were detected by CAD system. The remaining cases were finalized only by biopsy. Conclusion: CAD could be utilized for breast mass detection. This is a practical technique with low cost

    Dynamic age-related changes of extracellular field potential of isolated AV-node of rabbit

    Get PDF
    Introduction: Developmental changes in atrioventricular nodal conduction time and refractoriness have been shown in several studies. Prevalence of atrioventricular nodal reentrant tachycardia (AVNRT) is clearly age-dependent. The purpose of this study was to determine developmental changes of basic and frequency-dependent electrophysiological properties of the atrioventricular node (AV-node) in neonatal and adult rabbits. Methods: In this study, the effects of increasing age on the basic and rate-dependent properties of isolated perfused AV-node were analyzed in neonatal (2-week-old) and adult (12-week-old) New Zealand rabbits. Specific stimulation protocols of recovery, facilitation and fatigue were separately applied in each group (n=7). Unipolar extracellular field potential was recorded by a silver electrode (100 μM). Results: The results showed that the basic nodal properties (ERP, FRP, WBCL and AHmax) were significantly shorter in neonates compared to the adult group. The magnitude of fatigue was also decreased in the neonatal group compared to control (18.9 ±3.3 vs. 11.1 ± 1.2 msec). Time constant of recovery of the adult group was significantly higher than the neonatal group (P<0.05). Conclusion: The results of this study showed that nodal basic and frequency-dependent properties are age-related and different developmental changes of slow and fast pathways are responsible for this behavior and may reveal the grater susceptibility of AVNRT in young adults compared to infants
    corecore