438 research outputs found

    Policy and Practice Brief: Effect of Defaulted Student Loans on Return to Work Efforts

    Get PDF
    This brief describes types of student loans that exist and effects or defaulted student loans on individuals benefits. Reviewed are increased efforts to collect on defaulted student loans as well as remedies to take a loan out of default

    A status report on the analysis of the NOAA-9 SBUV/2 sweep mode solar irradiance data

    Get PDF
    Monitoring of the near ultraviolet (UV) solar irradiance is important because the solar UV radiation is the primary energy source in the upper atmosphere. The solar irradiance at wavelengths shortward of roughly 300 nm heats the stratosphere via photodissociation of ozone in the Hartley bands. Shortward of 242 nm the solar UV flux photodissociates O2, which is then available for ozone formation. Upper stratosphere ozone variations coincident with UV solar rotational modulation have been previously reported (Gille et al., 1984). Clearly, short and long term solar irradiance observations are necessary to separate solar-forced ozone variations from anthropogenic changes. The SBUV/2 instrument onboard the NOAA-9 spacecraft has made daily measurements of the solar spectral irradiance at approximately 0.15 nm intervals in the wavelength region 160-405 nm at 1 nm resolution since March 1985. These data are not needed to determine the terrestrial ozone overburden or altitude profile, and hence are not utilized in the NOAA Operational Ozone Product System (OOPS). Therefore, assisted by the ST System Corporation, NASA has developed a scientific software system to process the solar sweep mode data from the NOAA-9 instrument. This software will also be used to process the sweep mode solar irradiance data from the NOAA-11 and later SBUV/2 instruments. An overview of the software system and a brief discussion of analysis findings to date are provided. Several outstanding concerns/problems are also presented

    Female Labor Force Participation and Voter Turnout: Evidence from the American Presidential Elections

    Get PDF
    This study investigates a state-level panel dataset for the five most recent U.S. Presidential elections, namely, 2000, 2004, 2008, 2012, and 2016, for which all data needed to reflect all of the variables in the model are available. While the general objective is to shed further insights into identifying factors that in a contemporary setting influence the aggregate voter participation rate in such elections, the emphasis is on the impact of the female labor force participation rate, which is hypothesized, ceteris paribus, to positively affect aggregate voter turnout. Several Cross Section Random Effects estimates are undertaken, each of which supports the hypothesis. Indeed, the semi-log estimate implies that a one unit (one percentage point) higher level for the female labor force participation rate in a state is associated with a 0.61% higher overall voter turnout in the state. Although the nation’s female labor force participation rate in the U.S. has effectively stabilized, there is considerable interstate variation in this variable; thus, candidates for elected office in states with higher female labor force participation rates and/or growing female labor force participation rates would be well advised to be sensitive to the needs of this demographic when campaigning

    NOAA-11 SBUV/2 measurements of solar UV variations

    Get PDF
    The SBUV/2 instrument onboard the NOAA-11 satellite made daily solar spectral irradiance measurements in the wavelength region 160405 nm at 1.1 nm resolution between January 1989 and October 1994. These observations continued the uninterrupted series of solar measurements begun by the Nimbus-7 SBUV in 1978 and continued by NOAA-9 SBUV/2. While the measurements made by the SBUV-series instruments furnish an excellent data base for studies of solar UV variability, these instruments do not have an internal mew to evaluate and correct for long-term instrument sensitivity degradation, needed to evaluate solar cycle timescale irradiance change. During yearly Shuttle flights the Shuttle SBUV (SSBUV) also performs solar spectral irradiance measurements in the wavelength region 200 to 400 nm with an instrument that is calibrated preflight, inflight, and postflight. Comparisons between the simultaneous NOAA-11 SBUV/2 and SSBUV solar measurements are used to identify and correct long term sensitivity changes in the satellite instrument. The NOAA-11 data will then be used to evaluate long-term solar change. We present a progress report on the above process. At this preliminary stage uncertainties in the calibration transfer between SSBUV and NOAA-11 SBUV/2 are too large to accurately evaluate long-term solar change near the A1 edge, but solar rotational activity variations can be evaluated. We find that rotational activity declined from roughly 6% peak-to-peak (p-p) near the maximum of solar cycle 22 in 1989-1991 to approximately 3% p-p in mid 1992 and 2% p-p by mid 1994. Emphasizing rotational variations, comparisons between the 200 nm data and the NOAA-11 Mg II proxy index are presented

    Nimbus 7 solar backscatter ultraviolet (SBUV) ozone products user's guide

    Get PDF
    Three ozone tape products from the Solar Backscatter Ultraviolet (SBUV) experiment aboard Nimbus 7 were archived at the National Space Science Data Center. The experiment measures the fraction of incoming radiation backscattered by the Earth's atmosphere at 12 wavelengths. In-flight measurements were used to monitor changes in the instrument sensitivity. Total column ozone is derived by comparing the measurements with calculations of what would be measured for different total ozone amounts. The altitude distribution is retrieved using an optimum statistical technique for the inversion. The estimated initial error in the absolute scale for total ozone is 2 percent, with a 3 percent drift over 8 years. The profile error depends on latitude and height, smallest at 3 to 10 mbar; the drift increases with increasing altitude. Three tape products are described. The High Density SBUV (HDSBUV) tape contains the final derived products - the total ozone and the vertical ozone profile - as well as much detailed diagnostic information generated during the retrieval process. The Compressed Ozone (CPOZ) tape contains only that subset of HDSBUV information, including total ozone and ozone profiles, considered most useful for scientific studies. The Zonal Means Tape (ZMT) contains daily, weekly, monthly and quarterly averages of the derived quantities over 10 deg latitude zones

    Which solar EUV indices are best for reconstructing the solar EUV irradiance ?

    Get PDF
    The solar EUV irradiance is of key importance for space weather. Most of the time, however, surrogate quantities such as EUV indices have to be used by lack of continuous and spectrally resolved measurements of the irradiance. The ability of such proxies to reproduce the irradiance from different solar atmospheric layers is usually investigated by comparing patterns of temporal correlations. We consider instead a statistical approach. The TIMED/SEE experiment, which has been continuously operating since Feb. 2002, allows for the first time to compare in a statistical manner the EUV spectral irradiance to five EUV proxies: the sunspot number, the f10.7, Ca K, and Mg II indices, and the He I equivalent width. Using multivariate statistical methods such as multidimensional scaling, we represent in a single graph the measure of relatedness between these indices and various strong spectral lines. The ability of each index to reproduce the EUV irradiance is discussed; it is shown why so few lines can be effectively reconstructed from them. All indices exhibit comparable performance, apart from the sunspot number, which is the least appropriate. No single index can satisfactorily describe both the level of variability on time scales beyond 27 days, and relative changes of irradiance on shorter time scales.Comment: 6 figures, to appear in Adv. Space. Re

    Calculation of the properties of the rotational bands of 155,157^{155,157}Gd

    Full text link
    We reexamine the long-standing problem of the microscopic derivation of a particle-core coupling model. We base our research on the Klein-Kerman approach, as amended by D\"onau and Frauendorf. We describe the formalism to calculate energy spectra and transition strengths in some detail. We apply our formalism to the rotational nuclei 155,157^{155,157}Gd, where recent experimental data requires an explanation. We find no clear evidence of a need for Coriolis attenuation.Comment: 27 pages, 13 uuencoded postscript figures. Uses epsf.st
    • …
    corecore