2,790 research outputs found

    Detection of gravitational wave bursts by interferometric detectors

    Get PDF
    We study in this paper some filters for the detection of burst-like signals in the data of interferometric gravitational-wave detectors. We present first two general (non-linear) filters with no {\it a priori} assumption on the waveforms to detect. A third filter, a peak correlator, is also introduced and permits to estimate the gain, when some prior information is known about the waveforms. We use the catalogue of supernova gravitational-wave signals built by Zwerger and M\"uller in order to have a benchmark of the performance of each filter and to compare to the performance of the optimal filter. The three filters could be a part of an on-line triggering in interferometric gravitational-wave detectors, specialised in the selection of burst events.Comment: 15 pages, 8 figure

    The CELLULOSE SYNTHASE-LIKE A and CELLULOSE SYNTHASE-LIKE C families: recent advances and future perspectives

    Get PDF
    The CELLULOSE SYNTHASE (CESA) superfamily of proteins contains several sub-families of closely related CELLULOSE SYNTHASE-LIKE (CSL) sequences. Among these, the CSLA and CSLC families are closely related to each other and are the most evolutionarily divergent from the CESA family. Significant progress has been made with the functional characterization of CSLA and CSLC genes, which have been shown to encode enzymes with 1,4-β-glycan synthase activities involved in the biosynthesis of mannan and possibly xyloglucan backbones, respectively. This review examines recent work on the CSLA and CSLC families from evolutionary, molecular, and biochemical perspectives. We pose a series of questions, whose answers likely will provide further insight about the specific functions of members of the CSLA and CSLC families and about plant polysaccharide biosynthesis is general

    About the detection of gravitational wave bursts

    Get PDF
    Several filtering methods for the detection of gravitational wave bursts in interferometric detectors are presented. These are simple and fast methods which can act as online triggers. All methods are compared to matched filtering with the help of a figure of merit based on the detection of supernovae signals simulated by Zwerger and Muller.Comment: 5 pages, proceedings of GWDAW99 (Roma, Dec. 1999), to appear in Int. J. Mod. Phys.

    Overall Optics Solutions for Very High Beta in Atlas

    No full text
    accelconf.web.cern.ch/accelconf/e08/papers/wepp004.pdfInternational audienceAn insertion optics with a beta-star of at least 2600 m has been requested by the ATLAS experiment at the LHC. This is very far from the standard LHC physics optics and implies a significant reduction in the phase advance from this insertion corresponding to about half a unit in tune. We describe several alternatives how this could be integrated in overall LHC optics solutions with the possibility to inject, ramp and un-squeeze to the required very high beta

    Regularization of statistical inverse problems and the Bakushinskii veto

    Get PDF
    In the deterministic context Bakushinskii's theorem excludes the existence of purely data driven convergent regularization for ill-posed problems. We will prove in the present work that in the statistical setting we can either construct a counter example or develop an equivalent formulation depending on the considered class of probability distributions. Hence, Bakushinskii's theorem does not generalize to the statistical context, although this has often been assumed in the past. To arrive at this conclusion, we will deduce from the classic theory new concepts for a general study of statistical inverse problems and perform a systematic clarification of the key ideas of statistical regularization.Comment: 20 page

    Tracking and Tolerances Study for the ATLAS High Beta Optics

    No full text
    International audienc

    Overall Optics Solutions for very high Beta in ATLAS

    Get PDF
    An insertion optics with a β\beta* of at least 2600m has been requested by the ATLAS experiment at the LHC. This is very far from the standard LHC physics optics and implies a significant reduction in the phase advance from this insertion corresponding to about half a unit in tune. We describe several alternatives how this could be integrated in overall LHC optics solutions with the possibility to inject, ramp and un-squeeze to the required very high-β\beta*

    An efficient filter for detecting gravitational wave bursts in interferometric detectors

    Get PDF
    Typical sources of gravitational wave bursts are supernovae, for which no accurate models exist. This calls for search methods with high efficiency and robustness to be used in the data analysis of foreseen interferometric detectors. A set of such filters is designed to detect gravitational wave burst signals. We first present filters based on the linear fit of whitened data to short straight lines in a given time window and combine them in a non linear filter named ALF. We study the performances and efficiencies of these filters, with the help of a catalogue of simulated supernova signals. The ALF filter is the most performant and most efficient of all filters. Its performance reaches about 80% of the Optimal Filter performance designed for the same signals. Such a filter could be implemented as an online trigger (dedicated to detect bursts of unknown waveform) in interferometric detectors of gravitational waves

    Minimax estimation of the Wigner function in quantum homodyne tomography with ideal detectors

    Get PDF
    We estimate the quantum state of a light beam from results of quantum homodyne measurements performed on identically prepared pulses. The state is represented through the Wigner function, a ``quasi-probability density'' on R2\mathbb{R}^{2} which may take negative values and must respect intrinsic positivity constraints imposed by quantum physics. The data consists of nn i.i.d. observations from a probability density equal to the Radon transform of the Wigner function. We construct an estimator for the Wigner function, and prove that it is minimax efficient for the pointwise risk over a class of infinitely differentiable functions. A similar result was previously derived by Cavalier in the context of positron emission tomography. Our work extends this result to the space of smooth Wigner functions, which is the relevant parameter space for quantum homodyne tomography.Comment: 15 page

    A Direct Substrate-Substrate Interaction Found in the Kinase Domain of the Bifunctional Enzyme, 6-Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase

    Get PDF
    To understand the molecular basis of a phosphoryl transfer reaction catalyzed by the 6-phosphofructo-2-kinase domain of the hypoxia-inducible bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3), the crystal structures of PFKFB3{radical dot}AMPPCP{radical dot}fructose-6-phosphate and PFKFB3{radical dot}ADP{radical dot}phosphoenolpyruvate complexes were determined to 2.7 Å and 2.25 Å resolution, respectively. Kinetic studies on the wild-type and site-directed mutant proteins were carried out to confirm the structural observations. The experimentally varied liganding states in the active pocket cause no significant conformational changes. In the pseudo-substrate complex, a strong direct interaction between AMPPCP and fructose-6-phosphate (Fru-6-P) is found. By virtue of this direct substrate-substrate interaction, Fru-6-P is aligned with AMPPCP in an orientation and proximity most suitable for a direct transfer of the γ-phosphate moiety to 2-OH of Fru-6-P. The three key atoms involved in the phosphoryl transfer, the β,γ-phosphate bridge oxygen atom, the γ-phosphorus atom, and the 2-OH group are positioned in a single line, suggesting a direct phosphoryl transfer without formation of a phosphoenzyme intermediate. In addition, the distance between 2-OH and γ-phosphorus allows the γ-phosphate oxygen atoms to serve as a general base catalyst to induce an associative phosphoryl transfer mechanism. The site-directed mutant study and inhibition kinetics suggest that this reaction will be catalyzed most efficiently by the protein when the substrates bind to the active pocket in an ordered manner in which ATP binds first. © 2007 Elsevier Ltd. All rights reserved
    corecore