30 research outputs found
Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression
Over the past decade, it has become clear that mammalian genomes encode thousands of long non-coding RNAs (lncRNAs), many of which are now implicated in diverse biological processes. Recent work studying the molecular mechanisms of several key examples — including Xist, which orchestrates X chromosome inactivation — has provided new insights into how lncRNAs can control cellular functions by acting in the nucleus. Here we discuss emerging mechanistic insights into how lncRNAs can regulate gene expression by coordinating regulatory proteins, localizing to target loci and shaping three-dimensional (3D) nuclear organization. We explore these principles to highlight biological challenges in gene regulation, in which lncRNAs are well-suited to perform roles that cannot be carried out by DNA elements or protein regulators alone, such as acting as spatial amplifiers of regulatory signals in the nucleus
Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression
XMAP215-EB1 interaction is required for proper spindle assembly and chromosome segregation in Xenopus egg extract
In metaphase Xenopus egg extracts, global microtubule growth is mainly promoted by two unrelated microtubule stabilizers, end-binding protein 1 (EB1) and XMAP215. Here, we explore their role and potential redundancy in the regulation of spindle assembly and function. We find that at physiological expression levels, both proteins are required for proper spindle architecture: Spindles assembled in the absence of EB1 or at decreased XMAP215 levels are short and frequently multipolar. Moreover, the reduced density of microtubules at the equator of ΔEB1 or ΔXMAP215 spindles leads to faulty kinetochore–microtubule attachments. These spindles also display diminished poleward flux rates and, upon anaphase induction, they neither segregate chromosomes nor reorganize into interphasic microtubule arrays. However, EB1 and XMAP215 nonredundantly regulate spindle assembly because an excess of XMAP215 can compensate for the absence of EB1, whereas the overexpression of EB1 cannot substitute for reduced XMAP215 levels. Our data indicate that EB1 could positively regulate XMAP215 by promoting its binding to the microtubules. Finally, we show that disruption of the mitosis-specific XMAP215–EB1 interaction produces a phenotype similar to that of either EB1 or XMAP215 depletion. Therefore, the XMAP215–EB1 interaction is required for proper spindle organization and chromosome segregation in Xenopus egg extracts
Isolation of the protein and RNA content of active sites of transcription from mammalian cells.
Mammalian cell nuclei contain three RNA polymerases (RNAP I, RNAP II and RNAP III), which transcribe different gene subsets, and whose active forms are contained in supramolecular complexes known as 'transcription factories.' These complexes are difficult to isolate because they are embedded in the 3D structure of the nucleus. Factories exchange components with the soluble nucleoplasmic pool over time as gene expression programs change during development or disease. Analysis of their content can provide information on the nascent transcriptome and its regulators. Here we describe a protocol for the isolation of large factory fragments under isotonic salt concentrations in <72 h. It relies on DNase I-mediated detachment of chromatin from the nuclear substructure of freshly isolated, unfixed cells, followed by caspase treatment to release multi-megadalton factory complexes. These complexes retain transcriptional activity, and isolation of their contents is compatible with downstream analyses by mass spectrometry (MS) or RNA-sequencing (RNA-seq) to catalog the proteins and RNA associated with sites of active transcription
A pan-cancer analysis reveals nonstop extension mutations causing SMAD4 tumour suppressor degradation
Paraspeckles modulate the intranuclear distribution of paraspeckle-associated Ctn RNA
Paraspeckles are sub-nuclear domains that are nucleated by long noncoding RNA Neat1. While interaction of protein components of paraspeckles and Neat1 is understood, there is limited information on the interaction of non-structural RNA components with paraspeckles. Here, by varying paraspeckle number and size, we investigate how paraspeckles influence the nuclear organization of their non-structural RNA component Ctn RNA. Our results show that Ctn RNA remains nuclear-retained in the absence of intact paraspeckles, suggesting that they do not regulate nuclear retention of Ctn RNA. In the absence of Neat1, Ctn RNA continues to interact with paraspeckle protein NonO to form residual nuclear foci. In addition, in the absence of Neat1-nucleated paraspeckles, a subset of Ctn RNA localizes to the perinucleolar regions. Concomitant with increase in number of paraspeckles, transcriptional reactivation resulted in increased number of paraspeckle-localized Ctn RNA foci. Similar to Neat1, proteasome inhibition altered the localization of Ctn RNA, where it formed enlarged paraspeckle-like foci. Super-resolution structured illumination microscopic analyses revealed that in paraspeckles, Ctn RNA partially co-localized with Neat1, and displayed a more heterogeneous intra-paraspeckle localization. Collectively, these results show that while paraspeckles do not influence nuclear retention of Ctn RNA, they modulate its intranuclear compartmentalization
