263 research outputs found

    Simple models for dynamic hysteresis loops calculation: Application to hyperthermia optimization

    Full text link
    To optimize the heating properties of magnetic nanoparticles (MNPs) in magnetic hyperthermia applications, it is necessary to calculate the area of their hysteresis loops in an alternating magnetic field. The three types of theories suitable for describing the hysteresis loops of MNPs are presented and compared to numerical simulations: equilibrium functions, Stoner-Wohlfarth model based theories (SWMBTs) and linear response theory (LRT). Suitable formulas to calculate the hysteresis area of major cycles are deduced from SWMBTs and from numerical simulations; the domain of validity of the analytical formula is explicitly studied. In the case of minor cycles, the hysteresis area calculations are based on the LRT. A perfect agreement between LRT and numerical simulations of hysteresis loops is obtained. The domain of validity of the LRT is explicitly studied. Formulas to calculate the hysteresis area at low field valid for any anisotropy of the MNP are proposed. Numerical simulations of the magnetic field dependence of the area show it follows power-laws with a large range of exponents. Then, analytical expressions derived from LRT and SWMBTs are used for a theoretical study of magnetic hyperthermia. It is shown that LRT is only pertinent for MNPs with strong anisotropy and that SWMBTs should be used for weak anisotropy MNPs. The optimum volume of MNPs for magnetic hyperthermia as function of material and experimental parameters is derived. The maximum specific absorption rate (SAR) achievable is calculated versus the MNP anisotropy. It is shown that an optimum anisotropy increases the SAR and reduces the detrimental effects of size distribution. The optimum anisotropy is simple to calculate and depends on the magnetic field used in the hyperthermia experiments and on the MNP magnetization only. The theoretical optimum parameters are compared to the one of several magnetic materials.Comment: 35 pages, 1 table, 11 figure

    A frequency-adjustable electromagnet for hyperthermia measurements on magnetic nanoparticles

    Full text link
    We describe a low-cost and simple setup for hyperthermia measurements on colloidal solutions of magnetic nanoparticles (ferrofluids) with a frequency-adjustable magnetic field in the range 5-500 kHz produced by an electromagnet. By optimizing the general conception and each component (nature of the wires, design of the electromagnet), a highly efficient setup is obtained. For instance, in a useful gap of 1.1 cm, a magnetic field of 4.8 mT is generated at 100 kHz and 500 kHz with an output power of 3.4 W and 75 W, respectively. A maximum magnetic field of 30 mT is obtained at 100 kHz. The temperature of the colloidal solution is measured using optical fiber sensors. To remove contributions due to heating of the electromagnet, a differential measurement is used. In this configuration the sensitivity is better than 1.5 mW at 100 kHz and 19.3 mT. This setup allows one to measure weak heating powers on highly diluted colloidal solutions. The hyperthermia characteristics of a solution of Fe nanoparticles are described, where both the magnetic field and the frequency dependence of heating power have been measured

    Magnetoresistance and collective Coulomb blockade in super-lattices of ferromagnetic CoFe nanoparticles

    Full text link
    We report on transport properties of millimetric super-lattices of CoFe nanoparticles surrounded by organic ligands. R(T)s follow R(T) = R_0.exp(T/T_0)^0.5 with T_0 ranging from 13 to 256 K. At low temperature I(V)s follow I=K[(V-V_T)/V_T]^ksi with ksi ranging 3.5 to 5.2. I(V) superpose on a universal curve when shifted by a voltage proportional to the temperature. Between 1.8 and 10 K a high-field magnetoresistance with large amplitude and a strong voltage-dependence is observed. Its amplitude only depends on the magnetic field/temperature ratio. Its origin is attributed to the presence of paramagnetic states present at the surface or between the nanoparticles. Below 1.8 K, this high-field magnetoresistance abruptly disappears and inverse tunnelling magnetoresistance is observed, the amplitude of which does not exceed 1%. At this low temperature, some samples display in their I(V) characteristics abrupt and hysteretic transitions between the Coulomb blockade regime and the conductive regime. The increase of the current during these transitions can be as high as a factor 30. The electrical noise increases when the sample is near the transition. The application of a magnetic field decreases the voltage at which these transitions occur so magnetic-field induced transitions are also observed. Depending on the applied voltage, the temperature and the amplitude of the magnetic field, the magnetic-field induced transitions are either reversible or irreversible. These abrupt and hysteretic transitions are also observed in resistance-temperature measurements. They could be the soliton avalanches predicted by Sverdlov et al. [Phys. Rev. B 64, 041302 (R), 2001] or could also be interpreted as a true phase transition between a Coulomb glass phase to a liquid phase of electrons

    Magnetic anisotropy determination and magnetic hyperthermia properties of small Fe nanoparticles in the superparamagnetic regime

    Get PDF
    We report on the magnetic and hyperthermia properties of iron nanoparticles synthesized by organometallic chemistry. They are 5.5 nm in diameter and display a saturation magnetization close to the bulk one. Magnetic properties are dominated by the contribution of aggregates of nanoparticles with respect to individual isolated nanoparticles. Alternative susceptibility measurements are been performed on a low interacting system obtained after eliminating the aggregates by centrifugation. A quantitative analysis using the Gittleman s model allow a determination of the effective anisotropy Keff = 1.3 * 10^5 J.m^{-3}, more than two times the magnetocristalline value of bulk iron. Hyperthermia measurements are performed on agglomerates of nanoparticles at a magnetic field up to 66 mT and at frequencies in the range 5-300 kHz. Maximum measured SAR is 280 W/g at 300 kHz and 66 mT. Specific absorption rate (SAR) displays a square dependence with the magnetic field below 30 mT but deviates from this power law at higher value. SAR is linear with the applied frequency for mu_0H=19 mT. The deviations from the linear response theory are discussed. A refined estimation of the optimal size of iron nanoparticles for hyperthermia applications is provided using the determined effective anisotropy value

    Influence of a transverse static magnetic field on the magnetic hyperthermia properties and high-frequency hysteresis loops of ferromagnetic FeCo nanoparticles

    Full text link
    The influence of a transverse static magnetic field on the magnetic hyperthermia properties is studied on a system of large-losses ferromagnetic FeCo nanoparticles. The simultaneous measurement of the high-frequency hysteresis loops and of the temperature rise provides an interesting insight into the losses and heating mechanisms. A static magnetic field of only 40 mT is enough to cancel the heating properties of the nanoparticles, a result reproduced using numerical simulations of hysteresis loops. These results cast doubt on the possibility to perform someday magnetic hyperthermia inside a magnetic resonance imaging setup.Comment: 6 pages, 3 figure

    Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: Evidences for Stoner-Wohlfarth behaviour and large losses

    Full text link
    We report on hyperthermia measurements on a colloidal solution of 15 nm monodisperse FeCo nanoparticles (NPs). Losses as a function of the magnetic field display a sharp increase followed by a plateau, which is what is expected for losses of ferromagnetic single-domain NPs. The frequency dependence of the coercive field is deduced from hyperthermia measurement and is in quantitative agreement with a simple model of non-interacting NPs. The measured losses (1.5 mJ/g) compare to the highest of the literature, though the saturation magnetization of the NPs is well below the bulk one.Comment: 14 pages, 3 figure

    Influence of structural and magnetic properties in the heating performance of multicore bioferrofluids

    Get PDF
    Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).Biomedical applications of superparamagnetic iron oxide particles have been of interest for quite a number of years. Recent developments show that multifunctionality can be efficiently achieved using polymers to coat the particles and to provide anchoring elements to their surface. This leads to the formation of nanobeads with a reduced number of particles trapped by the polymeric structure. While the magnetothermic behavior of isolated nanoparticles has been a subject of interest over the past several years, multicore magnetic nanobeads have thus far not received the same attention. The influence of structural and magnetic properties in the hyperthermia performance of a series of magnetic fluids designed for biomedical purposes is studied here. The fluids are made of maghemite multicore polymeric beads, with variable nanoparticle size and hydrodynamic size, dispersed in a buffer solution. The specific loss power (SLP) was measured from 5 to 100 kHz with a field intensity of 21.8 kA/m. SLP increases with increasing magnetic core size, reaching 32 W/g Fe 2O3 at 100 kHz for 16.2 nm. Within the framework of the linear response theory, a graphical construction is proposed to describe the interplay of both size distributions and magnetic properties in the heating performance of such fluids in a given frequency range. Furthermore, a numerical model is developed to calculate the spare contribution of NĂ©el and Brown relaxation mechanisms to SLP, which gives a fair reproduction of the experimental data. © 2013 American Physical Society.R.B. would like to thank ICMA-CSIC for the JAE predoc grant. Financial support from Grant No. MAT2011-25991 is gratefully acknowledged. We acknowledge Fundaçùo para a CiĂȘncia e Tecnologia (FCT, Portugal), COMPETE, and FEDER programs (Pest-C/CTM/LA0011/2013). N.J.O.S. acknowledges FCT for the CiĂȘncia 2008 program.Peer Reviewe

    Use of nitrogen and oxygen isotopes of dissolved nitrate to trace field-scale induced denitrification efficiency throughout an in-situ groundwater remediation strategy

    Get PDF
    In the framework of the Life+ InSiTrate project, a pilot-plant was established to demonstrate the viability of inducing in-situ heterotrophic denitrification to remediate nitrate (NO3−)-polluted groundwater. Two injection wells supplied acetic acid by pulses to an alluvial aquifer for 22 months. The monitoring was performed by regular sampling at three piezometers and two wells located downstream. In the present work, the pilot-plant monitoring samples were used to test the usefulness of the isotopic tools to evaluate the efficiency of the treatment. The laboratory microcosm experiments determined an isotopic fractionation (Δ) for N-NO3− of −12.6 and for O-NO3− of −13.3 . These Δ15NNO3/N2 and Δ18ONO3/N2 values were modelled by using a Rayleigh distillation equation to estimate the percentage of the induced denitrification at the pilot-plant while avoiding a possible interference from dilution due to non-polluted water inputs. In some of the field samples, the induced NO3− reduction was higher than 50% with respect to the background concentration. The field samples showed a reduced slope between ÎŽ18O-NO3− and ÎŽ15N-NO3− (0.7) compared to the laboratory experiments (1.1). This finding was attributed to the reoxidation of NO2− to NO3− during the treatment. The NO3− isotopic characterization also permitted the recognition of a mixture between the denitrified and partially or non-denitrified groundwater in one of the sampling points. Therefore, the isotopic tools demonstrated usefulness in assessing the implementation of the field-scale induced denitrification strategy

    Magnetically induced CO2 methanation using exchange‐coupled spinel ferrites in cuboctahedron‐shaped nanocrystals

    Get PDF
    Magnetically induced catalysis can be promoted taking advantage of optimal heating properties from the magnetic nanoparticles to be employed. However, when unprotected, these heating agents that are usually air-sensitive, get sintered under the harsh catalytic conditions. In this context, we present, to the best of our knowledge, the first example of air-stable magnetic nanoparticles that: 1) show excellent performance as heating agents in the CO2 methanation catalyzed by Ni/SiRAlOx, with CH4 yields above 95 %, and 2) do not sinter under reaction conditions. To attain both characteristics we demonstrate, first the exchange-coupled magnetic approach as an alternative and effective way to tune the magnetic response and heating efficiency, and second, the chemical stability of cuboctahedron-shaped core–shell hard CoFe2O4–soft Fe3O4 nanoparticles.Xunta de Galicia | Ref. IN607 A 2018/5Xunta de Galicia | Ref. ED431C 2016-034Agencia Estatal de Investigación | Ref. CTM2017-84050-
    • 

    corecore