165 research outputs found

    Photoresponsive Control of G-Quadruplex DNA Systems

    Get PDF
    [Image: see text] G-quadruplex (G4) oligonucleotide secondary structures have recently attracted significant attention as therapeutic targets owing to their occurrence in human oncogene promoter sequences and the genome of pathogenic organisms. G4s also demonstrate interesting catalytic activities in their own right, as well as the ability to act as scaffolds for the development of DNA-based materials and nanodevices. Owing to this diverse range of opportunities to exploit G4 in a variety of applications, several strategies to control G4 structure and function have emerged. Interrogating the role of G4s in biology requires the delivery of small-molecule ligands that promote its formation under physiological conditions, while exploiting G4 in the development of responsive nanodevices is normally achieved by the addition and sequestration of the metal ions required for the stabilization of the folded structure. Although these strategies prove successful, neither allows the system in question to be controlled externally. Meanwhile, light has proven to be an attractive means for the control of DNA-based systems as it is noninvasive, can be delivered with high spatiotemporal precision, and is orthogonal to many chemical and biological processes. A plethora of photoresponsive DNA systems have been reported to date; however, the vast majority deploy photoreactive moieties to control the stability and assembly of duplex DNA hybrids. Despite the unique opportunities afforded by the regulation of G-quadruplex formation in biology, catalysis, and nanotechnology, comparatively little attention has been devoted to the design of photoresponsive G4-based systems. In this Perspective, we consider the potential of photoresponsive G4 assemblies and examine the strategies that may be used to engineer these systems toward a variety of applications. Through an overview of the main developments in the field to date, we highlight recent progress made toward this exciting goal and the emerging opportunities that remain ripe for further exploration in the coming years

    Reengineering of cancer cell surface charges can modulate cell migration

    Get PDF
    The ability to modulate the cell surface structure provides a powerful tool to understand fundamental processes and also to elicit desired cellular responses. Here we report the development of a new class of ‘clickable labels’ to reengineer the cell surface charges of live cells. The method relies on the use of metabolic oligosaccharide engineering (MOE) combined with chemo selective labeling of cell surface azido-containing sialic acids with dibenzocyclooctyne (DBCO) ionic-probes. Using this strategy, we demonstrate that reducing the negative charge induced by the overexpression of cell surface sialic acids in cancer cells leads to a reduction in cell migration without affecting drug supceptibility

    Carbon Dots as an Emergent Class of Antimicrobial Agents

    Get PDF
    Antimicrobial resistance is a recognized global challenge. Tools for bacterial detection can combat antimicrobial resistance by facilitating evidence-based antibiotic prescribing, thus avoiding their overprescription, which contributes to the spread of resistance. Unfortunately, traditional culture-based identification methods take at least a day, while emerging alternatives are limited by high cost and a requirement for skilled operators. Moreover, photodynamic inactivation of bacteria promoted by photosensitisers could be considered as one of the most promising strategies in the fight against multidrug resistance pathogens. In this context, carbon dots (CDs) have been identified as a promising class of photosensitiser nanomaterials for the specific detection and inactivation of different bacterial species. CDs possess exceptional and tuneable chemical and photoelectric properties that make them excellent candidates for antibacterial theranostic applications, such as great chemical stability, high water solubility, low toxicity and excellent biocompatibility. In this review, we will summarize the most recent advances on the use of CDs as antimicrobial agents, including the most commonly used methodologies for CD and CD/composites syntheses and their antibacterial properties in both in vitro and in vivo models developed in the last 3 years.Peer reviewe

    Carbohydrates as enantioinduction components in stereoselective catalysis

    Get PDF
    Carbohydrate derivatives are readily available chiral molecules, yet they are infrequently employed as enantioinduction components in stereoselective catalysis. In this review, synthetic approaches to carbohydrate-based ligands and catalysts are outlined, along with example applications in enantioselective catalysis. A wide range of carbohydrate-based functionality is covered, and key trends and future opportunities are identified

    Functional Glyconanomaterials

    Get PDF
    Nanotechnology provides a new array of techniques and platforms to study biological processes including glycosystems [...

    Stereoselective synthesis of glycosides using (salen)Co catalysts as promoters

    Get PDF
    The use of (salen)Co catalysts as a new class of bench-stable stereoselective glycosylation promoters of trichloroacetimidate glycosyl donors at room temperature is described.</p

    AuCl3-Catalyzed Hemiacetal Activation for the Stereoselective Synthesis of 2-Deoxy Trehalose Derivatives

    Get PDF
    [Image: see text] A new practical, catalytic, and highly stereoselective method for directly accessing 1,1-α,α′-linked 2-deoxy trehalose analogues via AuCl(3)-catalyzed dehydrative glycosylation using hemiacetal glycosyl donors and acceptors is described. The method relies on the chemoselective Brønsted acid-type activation of tribenzylated 2-deoxy hemiacetals in the presence of other less reactive hemiacetals
    • …
    corecore