6,172 research outputs found
Outlook for alternative energy sources
Predictions are made concerning the development of alternative energy sources in the light of the present national energy situation. Particular emphasis is given to the impact of alternative fuels development on aviation fuels. The future outlook for aircraft fuels is that for the near term, there possibly will be no major fuel changes, but minor specification changes may be possible if supplies decrease. In the midterm, a broad cut fuel may be used if current development efforts are successful. As synfuel production levels increase beyond the 1990's there may be some mixtures of petroleum-based and synfuel products with the possibility of some shale distillate and indirect coal liquefaction products near the year 2000
Experiments to determine the strength of filament-wound cylinders loaded in axial compression
Compressive strength of glass-epoxy multilayer filament wound cylinders loaded in axial compressio
Dynamic response of a flexible space beam
Dynamic response of a candidate flexible beam for a space experiment on control of flexible structures is investigated. Studies of natural frequencies reveal a beam length in which torsion and bending frequencies virtually coincide. Eccentric tip mass causes small shifts in natural frequencies but introduces coupled torsional/bending mode shapes. Transient response studies indicate significant effects on tip responses of low damping and first bending mode excitation at higher frequencies. Steady state response suggest displacement and acceleration measurements could be made up to 5 to 12 Hz for the actuator forces/torques assumed
Poverty, Income Distribution, and Growth: Are They Still Connected
macroeconomics, poverty, income distribution, growth
Thermal buckling analysis for stiffened orthotropic cylindrical shells
Structural analysis of thermal buckling of orthotropic, multilayered, stiffened cylindrical shell using finite differences and determinant plotting or modal iteratio
FY13 Planning Task Force Documents: University Library System, University of Pittsburgh, August 2011-June 2012
These documents provide a record of the work of the ULS FY13 Planning Task Force, which initiated and deployed a highly inclusive strategic planning process to analyze the library's strategic options, prioritize them, and identify key actions for implementation in FY13. The ULS FY13 Planning and Budget Report, submitted to the provost's office on 28 February 2012, incorporates the task force's recommended strategic priorities for FY13. Additional task force documents (e.g., meeting agendas, presentations by task force members, and materials related to the group's environmental scan) may be accessed via the library's internal site, Behind the Scenes, at http://bts.library.pitt.edu, under "General Planning.
Dynamics of leg muscle function in tammar wallabies (M. eugenii) during level versus incline hopping
The goal of our study was to examine whether the in vivo force-length behavior, work and elastic energy savings of distal muscle-tendon units in the legs of tammar wallabies (Macropus eugenii) change during level versus incline hopping. To address this question, we obtained measurements of muscle activation (via electromyography), fascicle strain (via sonomicrometry) and muscle-tendon force (via tendon buckles) from the lateral gastrocnemius (LG) and plantaris (PL) muscles of tammar wallabies trained to hop on a level and an inclined (10°, 17.4% grade) treadmill at two speeds (3.3 m s^(-1) and 4.2 m s^(-1)). Similar patterns of muscle activation, force and fascicle strain were observed under both level and incline conditions. This also corresponded to similar patterns of limb timing and movement (duty factor, limb contact time and hopping frequency). During both level and incline hopping, the LG and PL exhibited patterns of fascicle stretch and shortening that yielded low levels of net fascicle strain [LG: level, -1.0±4.6% (mean ± s.e.m.) vs incline, 0.6±4.5%; PL: level, 0.1±1.0% vs incline, 0.4±1.6%] and muscle work (LG: level, -8.4±8.4 J kg^(-1) muscle vs incline, -6.8±7.5 J kg^(-1) muscle; PL: level, -2.0±0.6 J kg^(-1) muscle vs incline, -1.4±0.7 J kg^(-1) muscle). Consequently, neither muscle significantly altered its contractile dynamics to do more work during incline hopping. Whereas electromyographic (EMG) phase, duration and intensity did not differ for the LG, the PL exhibited shorter but more intense periods of activation, together with reduced EMG phase (P<0.01), during incline versus level hopping. Our results indicate that design for spring-like tendon energy savings and economical muscle force generation is key for these two distal muscle-tendon units of the tammar wallaby, and the need to accommodate changes in work associated with level versus incline locomotion is achieved by more proximal muscles of the limb
Use of whole genome sequencing of commensal Escherichia coli in pigs for antimicrobial resistance surveillance, United Kingdom, 2018
BackgroundSurveillance of commensal Escherichia coli, a possible reservoir of antimicrobial resistance (AMR) genes, is important as they pose a risk to human and animal health. Most surveillance activities rely on phenotypic characterisation, but whole genome sequencing (WGS) presents an alternative.AimIn this retrospective study, we tested 515 E. coli isolated from pigs to evaluate the use of WGS to predict resistance phenotype.MethodsMinimum inhibitory concentration (MIC) was determined for nine antimicrobials of clinical and veterinary importance. Deviation from wild-type, fully-susceptible MIC was assessed using European Committee on Antimicrobial Susceptibility Testing (EUCAST) epidemiological cut-off (ECOFF) values. Presence of AMR genes and mutations were determined using APHA SeqFinder. Statistical two-by-two table analysis and Cohen's kappa (k) test were applied to assess genotype and phenotype concordance.ResultsOverall, correlation of WGS with susceptibility to the nine antimicrobials was 98.9% for test specificity, and 97.5% for the positive predictive value of a test. The overall kappa score (k = 0.914) indicated AMR gene presence was highly predictive of reduced susceptibility and showed excellent correlation with MIC. However, there was variation for each antimicrobial; five showed excellent correlation; four very good and one moderate. Suggested ECOFF adjustments increased concordance between genotypic data and kappa values for four antimicrobials.ConclusionWGS is a powerful tool for accurately predicting AMR that can be used for national surveillance purposes. Additionally, it can detect resistance genes from a wider panel of antimicrobials whose phenotypes are currently not monitored but may be of importance in the future
Self-organized escape of oscillator chains in nonlinear potentials
We present the noise free escape of a chain of linearly interacting units
from a metastable state over a cubic on-site potential barrier. The underlying
dynamics is conservative and purely deterministic. The mutual interplay between
nonlinearity and harmonic interactions causes an initially uniform lattice
state to become unstable, leading to an energy redistribution with strong
localization. As a result a spontaneously emerging localized mode grows into a
critical nucleus. By surpassing this transition state, the nonlinear chain
manages a self-organized, deterministic barrier crossing. Most strikingly,
these noise-free, collective nonlinear escape events proceed generally by far
faster than transitions assisted by thermal noise when the ratio between the
average energy supplied per unit in the chain and the potential barrier energy
assumes small values
- …
