69 research outputs found

    Hepatic fibrosis and immune phenotype vary by HCV viremia in HCV/HIV co-infected subjects: A Women\u27s interagency HIV study.

    Get PDF
    HCV and HIV independently lead to immune dysregulation. The mechanisms leading to advanced liver disease progression in HCV/HIV coinfected subjects remain unclear. In this cross-sectional study, we assessed the association of HCV viremia, liver fibrosis, and immune response patterns in well-characterized HIV phenotypes: Elite controllers (Elites), HIV controlled (ARTc), and HIV uncontrolled (ARTuc) matched by age and race. Groups were stratified by HCV RNA status. Regulatory T-cell frequencies, T-cell activation (HLADR+CD38+), apoptosis (Caspase-3+), and intracellular cytokines (interferon-γ, IL-2, IL-17) were assessed using multiparametric flow-cytometry. Liver fibrosis was scored by AST to platelet ratio index (APRI). We found liver fibrosis (APRI) was 50% lower in Elites and ARTc compared to ARTuc. Higher liver fibrosis was associated with significantly low CD4+ T cell counts (P \u3c 0.001, coefficient r = −0.463). Immune activation varied by HIV phenotype but was not modified by HCV viremia. HCV viremia was associated with elevated CD8 T-cell Caspase-3 in Elites, ARTuc, and HIV− except ARTc. CD8 T-cell Caspase-3 levels were significantly higher in HCV RNA+ Elites (P = 0.04) and ARTuc (P = 0.001) and HIV− groups (P = 0.02) than ARTc. Importantly, ARTuc HCV RNA+ had significantly higher CD4 T-cell interleukin-17 levels than ARTuc HCV RNA− (P = 0.005). HIV control was associated with lower liver fibrosis in HCV/HIV co-infected women. HCV viremia is associated with an inflammatory CD4 TH-17 phenotype in absence of HIV control and higher frequency of pro-apoptosis CD8 T-cells critical to avert progression of HIV and HCV disease that is attenuated in ART controllers. Elite controllers with HCV viremia are more prone to CD8 T-cell apoptosis than ART controllers, which could have negative consequences over time, highlighting the importance of ART control in HCV/HIV coinfected individuals

    The effect of HIV infection and HCV viremia on Inflammatory Mediators and Hepatic Injury-The Women\u27s Interagency HIV Study.

    Get PDF
    Hepatitis C virus infection induces inflammation and while it is believed that HIV co-infection enhances this response, HIV control may reduce inflammation and liver fibrosis in resolved or viremic HCV infection. Measurement of systemic biomarkers in co-infection could help define the mechanism of inflammation on fibrosis and determine if HIV control reduces liver pathology. A nested case-control study was performed to explore the relationship of systemic biomarkers of inflammation with liver fibrosis in HCV viremic and/or seropositive women with and without HIV infection. Serum cytokines, chemokines, growth factors and cell adhesion molecules were measured in HIV uninfected (HIV-, n = 18), ART-treated HIV-controlled (ARTc, n = 20), uncontrolled on anti-retroviral therapy (ARTuc, n = 21) and elite HIV controllers (Elite, n = 20). All were HCV seroreactive and had either resolved (HCV RNA-; \u3c50IU/mL) or had chronic HCV infection (HCV RNA+). In HCV and HIV groups, aspartate aminotransferase to platelet ratio (APRI) was measured and compared to serum cytokines, chemokines, growth factors and cell adhesion molecules. APRI correlated with sVCAM, sICAM, IL-10, and IP-10 levels and inversely correlated with EGF, IL-17, TGF-α and MMP-9 levels. Collectively, all HCV RNA+ subjects had higher sVCAM, sICAM and IP-10 compared to HCV RNA-. In the ART-treated HCV RNA+ groups, TNF-α, GRO, IP-10, MCP-1 and MDC were higher than HIV-, Elite or both. In ARTuc, FGF-2, MPO, soluble E-selectin, MMP-9, IL-17, GM-CSF and TGF-α are lower than HIV-, Elite or both. Differential expression of soluble markers may reveal mechanisms of pathogenesis or possibly reduction of fibrosis in HCV/HIV co-infection

    Genetic basis for variation in plasma IL-18 levels in persons with chronic hepatitis C virus and human immunodeficiency virus-1 infections

    Get PDF
    Inflammasomes are multi-protein complexes integrating pathogen-triggered signaling leading to the generation of pro-inflammatory cytokines including interleukin-18 (IL-18). Hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections are associated with elevated IL-18, suggesting inflammasome activation. However, there is marked person-to-person variation in the inflammasome response to HCV and HIV. We hypothesized that host genetics may explain this variation. To test this, we analyzed the associations of plasma IL-18 levels and polymorphisms in 10 genes in the inflammasome cascade. About 1538 participants with active HIV and/or HCV infection in three ancestry groups are included. Samples were genotyped using the Illumina Omni 1-quad and Omni 2.5 arrays. Linear regression analyses were performed to test the association of variants with log IL-18 including HCV and HIV infection status, and HIV RNA in each ancestry group and then meta-analyzed. Eleven highly correlated single-nucleotide polymorphisms (r²=0.98–1) in the IL-18-BCO2 region were significantly associated with log IL-18; each T allele of rs80011693 confers a decrease of 0.06 log pg ml⁻¹ of IL-18 after adjusting for covariates (rs80011693; rs111311302 β=−0.06, P-value=2.7 × 10⁻⁴). In conclusion, genetic variation in IL-18 is associated with IL-18 production in response to HIV and HCV infection, and may explain variability in the inflammatory outcomes of chronic viral infections

    Cyclic AMP signalling pathways in the regulation of uterine relaxation

    Get PDF
    Studying the mechanism(s) of uterine relaxation is important and will be helpful in the prevention of obstetric difficulties such as preterm labour, which remains a major cause of perinatal mortality and morbidity. Multiple signalling pathways regulate the balance between maintaining relative uterine quiescence during gestation, and the transition to the contractile state at the onset of parturition. Elevation of intracellular cyclic AMP promotes myometrial relaxation, and thus quiescence, via effects on multiple intracellular targets including calcium channels, potassium channels and myosin light chain kinase. A complete understanding of cAMP regulatory pathways (synthesis and hydrolysis) would assist in the development of better tocolytics to delay or inhibit preterm labour. Here we review the enzymes involved in cAMP homoeostasis (adenylyl cyclases and phosphodiesterases) and possible myometrial substrates for the cAMP dependent protein kinase. We must emphasise the need to identify novel pharmacological targets in human pregnant myometrium to achieve safe and selective uterine relaxation when this is indicated in preterm labour or other obstetric complications

    Adenylyl Cyclases 1 and 8 Initiate a Presynaptic Homeostatic Response to Ethanol Treatment

    Get PDF
    BACKGROUND:Although ethanol exerts widespread action in the brain, only recently has progress been made in understanding the specific events occurring at the synapse during ethanol exposure. Mice deficient in the calcium-stimulated adenylyl cyclases, AC1 and AC8 (DKO), demonstrate increased sedation duration and impaired phosphorylation by protein kinase A (PKA) following acute ethanol treatment. While not direct targets for ethanol, we hypothesize that these cyclases initiate a homeostatic presynaptic response by PKA to reactivate neurons from ethanol-mediated inhibition. METHODOLOGY/PRINCIPAL FINDINGS:Here, we have used phosphoproteomic techniques and identified several presynaptic proteins that are phosphorylated in the brains of wild type mice (WT) after ethanol exposure, including synapsin, a known PKA target. Phosphorylation of synapsins I and II, as well as phosphorylation of non-PKA targets, such as, eukaryotic elongation factor-2 (eEF-2) and dynamin is significantly impaired in the brains of DKO mice. This deficit is primarily driven by AC1, as AC1-deficient, but not AC8-deficient mice also demonstrate significant reductions in phosphorylation of synapsin and eEF-2 in cortical and hippocampal tissues. DKO mice have a reduced pool of functional recycling vesicles and fewer active terminals as measured by FM1-43 uptake compared to WT controls, which may be a contributing factor to the impaired presynaptic response to ethanol treatment. CONCLUSIONS/SIGNIFICANCE:These data demonstrate that calcium-stimulated AC-dependent PKA activation in the presynaptic terminal, primarily driven by AC1, is a critical event in the reactivation of neurons following ethanol-induced activity blockade

    Capacidades tecnicas y desafios del manejo forestal comunitario

    No full text

    Multiple AI predictive models for compressive strength of recycled aggregate concrete

    Get PDF
    To address the growing concerns about the environmental impact and construction costs, there has been an increasing interest in the use of recycled aggregates in concrete applications. Among the mechanical properties of concrete, compressive strength (fc) is particularly significant. This study explored the estimation of the compressive strength of recycled aggregate concrete using various machine-learning techniques. In this study, ‘Genetic Programming’ (GP), ‘artificial neural networks’ (ANN), and ‘Evolutionary Polynomial Regression’ (EPR) were employed to predict the 28-day compressive strength of recycled aggregate concrete. The considered predictive inputs encompass a range of factors, including cement, fine aggregate, recycled fine aggregate, coarse aggregate, recycled course aggregate, water, water-cement ratio, and superplasticizers, which produced 476 data entries. Among the models developed, the hybrid ANN-based model demonstrated superior performance compared with the other models. A rigorous assessment of the model performance was conducted through diverse statistical calculations, such as spearman correlation and internal consistency, relative importance of input parameters, sum of squared error (SSE) and the coefficient of determination designated as R-squared (R2). To reinforce the evaluation, a Taylor diagram and marginal histogram were employed as assessment parameters. Considering the statistical error analysis, Taylor diagram, and marginal histogram, the ANN-hybrid model was capable of accurately estimating the compressive strength (fc) of recycled aggregate concrete. The adopted machine learning models have the potential to conserve material resources and reduce the technical labor involved in determining the compressive strength of recycled aggregates in concrete applications
    corecore