12,814 research outputs found

    Are aerobic fitness and repeated sprint ability linked to fatigue in professional soccer match-play? A pilot study

    Get PDF
    This investigation examined the association between aerobic fitness and repeated sprint ability and match-related fatigue in 9 professional outfield soccer players. Aerobic fitness using maximal aerobic speed (MAS) was determined via a continuous progressive incremental running test conducted on a motorised treadmill. A repeated sprint ability test (6 successive 6 s sprints separated by 20 s passive recovery) was performed on a non-motorised treadmill to determine mean and best sprint times and a percentage decrement score (%PD). A total of 114 observations of physical performance derived using computerised time motion analyses were collected from 33 matches. Correlations between fitness test and match-play measures were examined for 1) accumulated fatigue: percentage difference between halves for total distance covered per minute, distance run at high-intensities (HIR, actions for 1s duration, >19.1 km/h) per minute, mean recovery time between high-intensity runs, and percentage difference between the distance covered in HIR in the first 5- and 15-minute periods versus the final 5- and 15-minute periods respectively in normal time; and for 2) transient fatigue: percentage difference between the distance covered in HIR in a peak 5-minute period and the subsequent 5-minute period and for the latter compared to the mean for all other 5-minute periods. No significant relationships were observed between MAS and fatigue scores (magnitude of associations: trivial to large). For mean and best sprint times and %PD, the only reported significant correlation (r=0.77, magnitude of association: very large, p<0.05) was between %PD and the % difference across halves for mean recovery time between high-intensity runs (magnitude of other associations: small to large). Criterion measures from tests of aerobic fitness and repeated sprint ability might not accurately depict a player’s capacity to resist fatigue during professional soccer competition

    Squad management, injury and match performance in a professional soccer team over a Championship-winning season

    Get PDF
    Squad management, injury and physical, tactical and technical match performance were investigated in a professional soccer team across five consecutive league seasons (2008–2013, 190 league games) with specific focus on a championship-winning season (2010/11). For each player, match participation and time-loss injuries were recorded, the latter prospectively diagnosed by the team's physician. Defending and attacking tactical and technical performance indicators investigated included ball possession and possession in opponents' half, passes, forward passes, completed passes and forward passes, crosses and completed crosses, goal attempts and goal attempts on target, successful final third entries, free-kicks and 50/50 duels won/lost. Physical performance measures included total distance and distance covered at high-speeds (≥19.1 km/h). Results showed that during the 2010/11 season, squad utilisation was lowest potentially owing to the observed lower match injury occurrence and working days lost to injury thereby increasing player availability. In 2010/11, the team won both its highest number of points and conceded its lowest number of goals especially over the second half of this season. The team also won its highest number of games directly via a goal from a substitute and scored and conceded a goal first on the highest and lowest number of occasions, respectively. While multivariate analysis of variance (MANOVA) detected a significant difference in some attacking and defensive performance indicators across the five seasons, these were generally not distinguishing factors in 2010/11. Similarly, univariate ANOVAs showed a significant difference in running distances covered across seasons, but the trend was for less activity in 2010/11

    Long-lived quantum memory with nuclear atomic spins

    Full text link
    We propose to store non-classical states of light into the macroscopic collective nuclear spin (101810^{18} atoms) of a 3^3He vapor, using metastability exchange collisions. These collisions, commonly used to transfer orientation from the metastable state 23S_12^{3}S\_1 to the ground state state of 3^3He, can also transfer quantum correlations. This gives a possible experimental scheme to map a squeezed vacuum field state onto a nuclear spin state with very long storage times (hours).Comment: 4 page

    Effect of trap symmetry and atom-atom interactions on a trapped atom interferometer with internal state labelling

    Full text link
    In this paper, we study the dynamics of a trapped atom interferometer with internal state labelling in the presence of interactions. We consider two situations: an atomic clock in which the internal states remain superposed, and an inertial sensor configuration in which they are separated. From the average spin evolution, we deduce the fringe contrast and the phase-shift. In the clock configuration, we recover the well-known identical spin rotation effect (ISRE) which can significantly increase the spin coherence time. We also find that the magnitude of the effect depends on the trap geometry in a way that is consistent with our recent experimental results in a clock configuration [M. Dupont-Nivet, and al., New J. Phys., 20, 043051 (2018)], where ISRE was not observed. In the case of an inertial sensor, we show that despite the spatial separation it is still possible to increase the coherence time by using mean field interactions to counteract asymmetries of the trapping potential.Comment: 18 pages, 5 figure

    Analysis of repeated high-intensity running performance in professional soccer

    Get PDF
    The aims of this study conducted in a professional soccer team were two-fold: to characterise repeated high-intensity movement activity profiles in official match-play; b) to inform and verify the construct validity of tests commonly used to determine repeated-sprint ability in soccer by investigating the relationship between the results from a test of repeated-sprint ability and repeated high-intensity performance in competition. High-intensity running performance (movement at velocities >19.8 km/h for a minimum of 1-s duration) in 20 players was measured using computerised time motion analysis. Performance in 80 French League 1 matches was analysed. In addition, 12 out of the 20 players performed a repeated-sprint test on a non-motorized treadmill consisting of 6 consecutive 6s sprints separated by 20s passive recovery intervals. In all players, the majority of consecutive high-intensity actions in competition were performed after recovery durations ≥61s, recovery activity separating these efforts was generally active in nature with the major part of this spent walking, and players performed 1.1±1.1 repeated high-intensity bouts (a minimum of 3 consecutive high-intensity with a mean recovery time ≤20s separating efforts) per game. Players reporting lowest performance decrements in the repeated-sprint ability test performed more high-intensity actions interspersed by short recovery times (≤20s, p<0.01 and ≤30s, p<0.05) compared to those with higher decrements. Across positional roles, central-midfielders performed a greater number of high-intensity actions separated by short recovery times (≤20s) and spent a larger proportion of time running at higher intensities during recovery periods while fullbacks performed the most repeated high-intensity bouts (statistical differences across positional roles from p<0.05 to p<0.001). These findings have implications for repeated high-intensity testing and physical conditioning regimens

    Evaluating air quality by combining stationary, smart mobile pollution monitoring and data-driven modelling

    Full text link
    © 2019 Elsevier Ltd Air pollution impact assessment is a major objective for various community councils in large cities, which have lately redirected their attention towards using more low-cost sensing units supported by citizen involvement. However, there is a lack of research studies investigating real-time mobile air-quality measurement through smart sensing units and even more of any data-driven modelling techniques that could be deployed to predict air quality accurately from the generated data-sets. This paper addresses these challenges by: a) proposing a comparative and detailed investigation of various air quality monitoring devices (both fixed and mobile), tested through field measurements and citizen sensing in an eco-neighbourhood from Lorraine, France, and by b) proposing a machine learning approach to evaluate the accuracy and potential of such mobile generated data for air quality prediction. The air quality evaluation consists of three experimenting protocols: a) first, we installed fixed passive tubes for monitoring the nitrogen dioxide concentrations placed in strategic locations highly affected by traffic circulation in an eco-neighbourhood, b) second, we monitored the nitrogen dioxide registered by citizens using smart and mobile pollution units carried at breathing level; results revealed that mobile-captured concentrations were 3–5 times higher than the ones registered by passive-static monitoring tubes and c) third, we compared different mobile pollution stations working simultaneously, which revealed noticeable differences in terms of result variability and sensitivity. Finally, we applied a machine learning modelling by using decision trees and neural networks on the mobile-generated data and show that humidity and noise are the most important factors influencing the prediction of nitrogen dioxide concentrations of mobile stations

    Protective activity of propofol, Diprivan and intralipid against active oxygen species.

    Get PDF
    We separately studied the antioxidant properties of propofol (PPF), Diprivan (the commercial form of PPF) and intralipid (IL) (the vehicle solution of PPF in Diprivan) on active oxygen species produced by phorbol myristate acetate (10(-6) M)-stimulated human polymorphonuclear leukocytes (PMN: 5 x 10(5) cells/assay), human endothelial cells (5 x 10(5) cells/assay) or cell-free systems (NaOCl or H2O2/peroxidase systems), using luminol (10(-4) M)-enhanced chemiluminescence (CL). We also studied the protective effects of Diprivan on endothelial cells submitted to an oxidant stress induced by H2O2/MPO system: cytotoxicity was assessed by the release of preincorporated 51Cr. Propofol inhibited the CL produced by stimulated PMN in a dose dependent manner (until 5 x 10(-5) M, a clinically relevant concentration), while Diprivan and IL were not dose-dependent inhibitors. The CL produced by endothelial cells was dose-dependently inhibited by Diprivan and PPF, and weakly by IL (not dose-dependent). In cell free systems, dose-dependent inhibitions were obtained for the three products with a lower effect for IL. Diprivan efficaciously protected endothelial cells submitted to an oxidant stress, while IL was ineffective. By HPLC, we demonstrated that PPF was not incorporated into the cells. The drug thus acted by scavenging the active oxygen species released in the extracellular medium. IL acted in the same manner, but was a less powerful antioxidant

    Towards improved socio-economic assessments of ocean acidification’s impacts

    Get PDF
    Ocean acidification is increasingly recognized as a component of global change that could have a wide range of impacts on marine organisms, the ecosystems they live in, and the goods and services they provide humankind. Assessment of these potential socio-economic impacts requires integrated efforts between biologists, chemists, oceanographers, economists and social scientists. But because ocean acidification is a new research area, significant knowledge gaps are preventing economists from estimating its welfare impacts. For instance, economic data on the impact of ocean acidification on significant markets such as fisheries, aquaculture and tourism are very limited (if not non-existent), and non-market valuation studies on this topic are not yet available. Our paper summarizes the current understanding of future OA impacts and sets out what further information is required for economists to assess socio-economic impacts of ocean acidification. Our aim is to provide clear directions for multidisciplinary collaborative research

    Effect of a gap on the decoherence of a qubit

    Full text link
    We revisit the problem of the decoherence and relaxation of a central spin coupled to a bath of conduction electrons. We consider both metallic and semiconducting baths to study the effect of a gap in the bath density of states (DOS) on the time evolution of the density matrix of the central spin. We use two weak coupling approximation schemes to study the decoherence. At low temperatures, though the temperature dependence of the decoherence rate in the case of a metallic bath is the same irrespective of the details of the bath, the same is not true for the semiconducting bath. We also calculate the relaxation and decoherence rates as a function of external magnetic fields applied both on the central spin and the bath. We find that in the presence of the gap, there exists a certain regime of fields, for which surprisingly, the metallic bath has lower rates of relaxation and decoherence than the semiconducting bath.Comment: 9 pages, 9 figure
    corecore