23,304 research outputs found
Massive-Scalar Effective Actions on Anti-de Sitter Spacetime
Closed forms are derived for the effective actions for free, massive spinless
fields in anti-de Sitter spacetimes in arbitrary dimensions. The results have
simple expressions in terms of elementary functions (for odd dimensions) or
multiple Gamma functions (for even dimensions). We use these to argue against
the quantum validity of a recently-proposed duality relating such theories with
differing masses and cosmological constants.Comment: 23 pages, plain TeX, one figur
Who You Gonna Call? Runaway Ghosts, Higher Derivatives and Time-Dependence in EFTs
We briefly review the formulation of effective field theories (EFTs) in
time-dependent situations, with particular attention paid to their domain of
validity. Our main interest is the extent to which solutions of the EFT capture
the dynamics of the full theory. For a simple model we show by explicit
calculation that the low-energy action obtained from a sensible UV completion
need not take the restrictive form required to obtain only second-order field
equations, and we clarify why runaway solutions are nevertheless typically not
a problem for the EFT. Although our results will not be surprising to many, to
our knowledge they are only mentioned tangentially in the EFT literature, which
(with a few exceptions) largely addresses time-independent situations.Comment: 12 page
Covariant approach to equilibration in effective field theories
The equilibration of two coupled reservoirs is studied using a Green function
approach which is suitable for future development with the closed time path
method. The problem is solved in two parameterizations, in order to demonstrate
the non-trivial issues of parameterization in both the intermediate steps and
the interpretation of physical quantities. We use a covariant approach to find
self-consistent solutions for the statistical distributions as functions of
time. We show that by formally introducing covariant connections, one can
rescale a slowly varying non-equilibrium theory so that it appears to be an
equilibrium one, for the purposes of calculation. We emphasize the importance
of properly tracking variable redefinitions in order to correctly interpret
physical quantities.Comment: 11 pages, Late
A Computational Approach to Estimating Nondisjunction Frequency in Saccharomyces cerevisiae.
Errors segregating homologous chromosomes during meiosis result in aneuploid gametes and are the largest contributing factor to birth defects and spontaneous abortions in humans. Saccharomyces cerevisiae has long served as a model organism for studying the gene network supporting normal chromosome segregation. Measuring homolog nondisjunction frequencies is laborious, and involves dissecting thousands of tetrads to detect missegregation of individually marked chromosomes. Here we describe a computational method (TetFit) to estimate the relative contributions of meiosis I nondisjunction and random-spore death to spore inviability in wild type and mutant strains. These values are based on finding the best-fit distribution of 4, 3, 2, 1, and 0 viable-spore tetrads to an observed distribution. Using TetFit, we found that meiosis I nondisjunction is an intrinsic component of spore inviability in wild-type strains. We show proof-of-principle that the calculated average meiosis I nondisjunction frequency determined by TetFit closely matches empirically determined values in mutant strains. Using these published data sets, TetFit uncovered two classes of mutants: Class A mutants skew toward increased nondisjunction death, and include those with known defects in establishing pairing, recombination, and/or synapsis of homologous chromosomes. Class B mutants skew toward random spore death, and include those with defects in sister-chromatid cohesion and centromere function. Epistasis analysis using TetFit is facilitated by the low numbers of tetrads (as few as 200) required to compare the contributions to spore death in different mutant backgrounds. TetFit analysis does not require any special strain construction, and can be applied to previously observed tetrad distributions
Recommended from our members
Ar-Ar age and halogen characteristics of nakhlite MIL 03346: records of crustal processes on Mars
Self-Tuning at Large (Distances): 4D Description of Runaway Dilaton Capture
We complete here a three-part study (see also arXiv:1506.08095 and
1508.00856) of how codimension-two objects back-react gravitationally with
their environment, with particular interest in situations where the transverse
`bulk' is stabilized by the interplay between gravity and flux-quantization in
a dilaton-Maxwell-Einstein system such as commonly appears in
higher-dimensional supergravity and is used in the Supersymmetric Large Extra
Dimensions (SLED) program. Such systems enjoy a classical flat direction that
can be lifted by interactions with the branes, giving a mass to the would-be
modulus that is smaller than the KK scale. We construct the effective
low-energy 4D description appropriate below the KK scale once the transverse
extra dimensions are integrated out, and show that it reproduces the
predictions of the full UV theory for how the vacuum energy and modulus mass
depend on the properties of the branes and stabilizing fluxes. In particular we
show how this 4D theory learns the news of flux quantization through the
existence of a space-filling four-form potential that descends from the
higher-dimensional Maxwell field. We find a scalar potential consistent with
general constraints, like the runaway dictated by Weinberg's theorem. We show
how scale-breaking brane interactions can give this potential minima for which
the extra-dimensional size, , is exponentially large relative to
underlying physics scales, , with where
can be arranged with a small hierarchy between fundamental
parameters. We identify circumstances where the potential at the minimum can
(but need not) be parametrically suppressed relative to the tensions of the
branes, provide a preliminary discussion of the robustness of these results to
quantum corrections, and discuss the relation between what we find and earlier
papers in the SLED program.Comment: 37 pages + appendice
String Inflation After Planck 2013
We briefly summarize the impact of the recent Planck measurements for string
inflationary models, and outline what might be expected to be learned in the
near future from the expected improvement in sensitivity to the primordial
tensor-to-scalar ratio. We comment on whether these models provide sufficient
added value to compensate for their complexity, and ask how they fare in the
face of the new constraints on non-gaussianity and dark radiation. We argue
that as a group the predictions made before Planck agree well with what has
been seen, and draw conclusions from this about what is likely to mean as
sensitivity to primordial gravitational waves improves.Comment: LaTeX, 21 pages plus references; slight modification of the
discussion of inflection point inflation, references added and typos
correcte
EFT for Vortices with Dilaton-dependent Localized Flux
We study how codimension-two objects like vortices back-react gravitationally
with their environment in theories (such as 4D or higher-dimensional
supergravity) where the bulk is described by a dilaton-Maxwell-Einstein system.
We do so both in the full theory, for which the vortex is an explicit classical
`fat brane' solution, and in the effective theory of `point branes' appropriate
when the vortices are much smaller than the scales of interest for their
back-reaction (such as the transverse Kaluza-Klein scale). We extend the
standard Nambu-Goto description to include the physics of flux-localization
wherein the ambient flux of the external Maxwell field becomes partially
localized to the vortex, generalizing the results of a companion paper to
include dilaton-dependence for the tension and localized flux. In the effective
theory, such flux-localization is described by the next-to-leading effective
interaction, and the boundary conditions to which it gives rise are known to
play an important role in how (and whether) the vortex causes supersymmetry to
break in the bulk. We track how both tension and localized flux determine the
curvature of the space-filling dimensions. Our calculations provide the tools
required for computing how scale-breaking vortex interactions can stabilize the
extra-dimensional size by lifting the dilaton's flat direction. For small
vortices we derive a simple relation between the near-vortex boundary
conditions of bulk fields as a function of the tension and localized flux in
the vortex action that provides the most efficient means for calculating how
physical vortices mutually interact without requiring a complete construction
of their internal structure. In passing we show why a common procedure for
doing so using a -function can lead to incorrect results. Our
procedures generalize straightforwardly to general co-dimension objects.Comment: 45 pages + appendix, 6 figure
- âŠ