23,304 research outputs found

    Massive-Scalar Effective Actions on Anti-de Sitter Spacetime

    Get PDF
    Closed forms are derived for the effective actions for free, massive spinless fields in anti-de Sitter spacetimes in arbitrary dimensions. The results have simple expressions in terms of elementary functions (for odd dimensions) or multiple Gamma functions (for even dimensions). We use these to argue against the quantum validity of a recently-proposed duality relating such theories with differing masses and cosmological constants.Comment: 23 pages, plain TeX, one figur

    Who You Gonna Call? Runaway Ghosts, Higher Derivatives and Time-Dependence in EFTs

    Get PDF
    We briefly review the formulation of effective field theories (EFTs) in time-dependent situations, with particular attention paid to their domain of validity. Our main interest is the extent to which solutions of the EFT capture the dynamics of the full theory. For a simple model we show by explicit calculation that the low-energy action obtained from a sensible UV completion need not take the restrictive form required to obtain only second-order field equations, and we clarify why runaway solutions are nevertheless typically not a problem for the EFT. Although our results will not be surprising to many, to our knowledge they are only mentioned tangentially in the EFT literature, which (with a few exceptions) largely addresses time-independent situations.Comment: 12 page

    Covariant approach to equilibration in effective field theories

    Full text link
    The equilibration of two coupled reservoirs is studied using a Green function approach which is suitable for future development with the closed time path method. The problem is solved in two parameterizations, in order to demonstrate the non-trivial issues of parameterization in both the intermediate steps and the interpretation of physical quantities. We use a covariant approach to find self-consistent solutions for the statistical distributions as functions of time. We show that by formally introducing covariant connections, one can rescale a slowly varying non-equilibrium theory so that it appears to be an equilibrium one, for the purposes of calculation. We emphasize the importance of properly tracking variable redefinitions in order to correctly interpret physical quantities.Comment: 11 pages, Late

    A Computational Approach to Estimating Nondisjunction Frequency in Saccharomyces cerevisiae.

    Get PDF
    Errors segregating homologous chromosomes during meiosis result in aneuploid gametes and are the largest contributing factor to birth defects and spontaneous abortions in humans. Saccharomyces cerevisiae has long served as a model organism for studying the gene network supporting normal chromosome segregation. Measuring homolog nondisjunction frequencies is laborious, and involves dissecting thousands of tetrads to detect missegregation of individually marked chromosomes. Here we describe a computational method (TetFit) to estimate the relative contributions of meiosis I nondisjunction and random-spore death to spore inviability in wild type and mutant strains. These values are based on finding the best-fit distribution of 4, 3, 2, 1, and 0 viable-spore tetrads to an observed distribution. Using TetFit, we found that meiosis I nondisjunction is an intrinsic component of spore inviability in wild-type strains. We show proof-of-principle that the calculated average meiosis I nondisjunction frequency determined by TetFit closely matches empirically determined values in mutant strains. Using these published data sets, TetFit uncovered two classes of mutants: Class A mutants skew toward increased nondisjunction death, and include those with known defects in establishing pairing, recombination, and/or synapsis of homologous chromosomes. Class B mutants skew toward random spore death, and include those with defects in sister-chromatid cohesion and centromere function. Epistasis analysis using TetFit is facilitated by the low numbers of tetrads (as few as 200) required to compare the contributions to spore death in different mutant backgrounds. TetFit analysis does not require any special strain construction, and can be applied to previously observed tetrad distributions

    Self-Tuning at Large (Distances): 4D Description of Runaway Dilaton Capture

    Full text link
    We complete here a three-part study (see also arXiv:1506.08095 and 1508.00856) of how codimension-two objects back-react gravitationally with their environment, with particular interest in situations where the transverse `bulk' is stabilized by the interplay between gravity and flux-quantization in a dilaton-Maxwell-Einstein system such as commonly appears in higher-dimensional supergravity and is used in the Supersymmetric Large Extra Dimensions (SLED) program. Such systems enjoy a classical flat direction that can be lifted by interactions with the branes, giving a mass to the would-be modulus that is smaller than the KK scale. We construct the effective low-energy 4D description appropriate below the KK scale once the transverse extra dimensions are integrated out, and show that it reproduces the predictions of the full UV theory for how the vacuum energy and modulus mass depend on the properties of the branes and stabilizing fluxes. In particular we show how this 4D theory learns the news of flux quantization through the existence of a space-filling four-form potential that descends from the higher-dimensional Maxwell field. We find a scalar potential consistent with general constraints, like the runaway dictated by Weinberg's theorem. We show how scale-breaking brane interactions can give this potential minima for which the extra-dimensional size, ℓ\ell, is exponentially large relative to underlying physics scales, rBr_B, with ℓ2=rB2e−φ\ell^2 = r_B^2 e^{- \varphi} where −φ≫1-\varphi \gg 1 can be arranged with a small hierarchy between fundamental parameters. We identify circumstances where the potential at the minimum can (but need not) be parametrically suppressed relative to the tensions of the branes, provide a preliminary discussion of the robustness of these results to quantum corrections, and discuss the relation between what we find and earlier papers in the SLED program.Comment: 37 pages + appendice

    String Inflation After Planck 2013

    Full text link
    We briefly summarize the impact of the recent Planck measurements for string inflationary models, and outline what might be expected to be learned in the near future from the expected improvement in sensitivity to the primordial tensor-to-scalar ratio. We comment on whether these models provide sufficient added value to compensate for their complexity, and ask how they fare in the face of the new constraints on non-gaussianity and dark radiation. We argue that as a group the predictions made before Planck agree well with what has been seen, and draw conclusions from this about what is likely to mean as sensitivity to primordial gravitational waves improves.Comment: LaTeX, 21 pages plus references; slight modification of the discussion of inflection point inflation, references added and typos correcte

    EFT for Vortices with Dilaton-dependent Localized Flux

    Full text link
    We study how codimension-two objects like vortices back-react gravitationally with their environment in theories (such as 4D or higher-dimensional supergravity) where the bulk is described by a dilaton-Maxwell-Einstein system. We do so both in the full theory, for which the vortex is an explicit classical `fat brane' solution, and in the effective theory of `point branes' appropriate when the vortices are much smaller than the scales of interest for their back-reaction (such as the transverse Kaluza-Klein scale). We extend the standard Nambu-Goto description to include the physics of flux-localization wherein the ambient flux of the external Maxwell field becomes partially localized to the vortex, generalizing the results of a companion paper to include dilaton-dependence for the tension and localized flux. In the effective theory, such flux-localization is described by the next-to-leading effective interaction, and the boundary conditions to which it gives rise are known to play an important role in how (and whether) the vortex causes supersymmetry to break in the bulk. We track how both tension and localized flux determine the curvature of the space-filling dimensions. Our calculations provide the tools required for computing how scale-breaking vortex interactions can stabilize the extra-dimensional size by lifting the dilaton's flat direction. For small vortices we derive a simple relation between the near-vortex boundary conditions of bulk fields as a function of the tension and localized flux in the vortex action that provides the most efficient means for calculating how physical vortices mutually interact without requiring a complete construction of their internal structure. In passing we show why a common procedure for doing so using a ÎŽ\delta-function can lead to incorrect results. Our procedures generalize straightforwardly to general co-dimension objects.Comment: 45 pages + appendix, 6 figure
    • 

    corecore