175 research outputs found
Non-Gorenstein isolated singularities of graded countable Cohen-Macaulay type
In this paper we show a partial answer the a question of C. Huneke and G.
Leuschke (2003): Let R be a standard graded Cohen-Macaulay ring of graded
countable Cohen-Macaulay representation type, and assume that R has an isolated
singularity. Is R then necessarily of graded finite Cohen-Macaulay
representation type? In particular, this question has an affirmative answer for
standard graded non-Gorenstein rings as well as for standard graded Gorenstein
rings of minimal multiplicity. Along the way, we obtain a partial
classification of graded Cohen-Macaulay rings of graded countable
Cohen-Macaulay type.Comment: 15 Page
Non-commutative desingularization of determinantal varieties, I
We show that determinantal varieties defined by maximal minors of a generic
matrix have a non-commutative desingularization, in that we construct a maximal
Cohen-Macaulay module over such a variety whose endomorphism ring is
Cohen-Macaulay and has finite global dimension. In the case of the determinant
of a square matrix, this gives a non-commutative crepant resolution.Comment: 52 pages, 3 figures, all comments welcom
Caracterização agrônomica de populações locais de azevém na região sul do Brasil.
Made available in DSpace on 2011-06-07T16:18:22Z (GMT). No. of bitstreams: 1
dpma802cr2000.pdf: 314565 bytes, checksum: a08ba4df77c69b477b8cc8fcbd0dccef (MD5)
Previous issue date: 2011-02-15201
Class and rank of differential modules
A differential module is a module equipped with a square-zero endomorphism.
This structure underpins complexes of modules over rings, as well as
differential graded modules over graded rings. We establish lower bounds on the
class--a substitute for the length of a free complex--and on the rank of a
differential module in terms of invariants of its homology. These results
specialize to basic theorems in commutative algebra and algebraic topology. One
instance is a common generalization of the equicharacteristic case of the New
Intersection Theorem of Hochster, Peskine, P. Roberts, and Szpiro, concerning
complexes over noetherian commutative rings, and of a theorem of G. Carlsson on
differential graded modules over graded polynomial rings.Comment: 27 pages. Minor changes; mainly stylistic. To appear in Inventiones
Mathematica
Arithmetically Cohen-Macaulay Bundles on complete intersection varieties of sufficiently high multidegree
Recently it has been proved that any arithmetically Cohen-Macaulay (ACM)
bundle of rank two on a general, smooth hypersurface of degree at least three
and dimension at least four is a sum of line bundles. When the dimension of the
hypersurface is three, a similar result is true provided the degree of the
hypersurface is at least six. We extend these results to complete intersection
subvarieties by proving that any ACM bundle of rank two on a general, smooth
complete intersection subvariety of sufficiently high multi-degree and
dimension at least four splits. We also obtain partial results in the case of
threefolds.Comment: 15 page
D-brane Categories for Orientifolds -- The Landau-Ginzburg Case
We construct and classify categories of D-branes in orientifolds based on
Landau-Ginzburg models and their orbifolds. Consistency of the worldsheet
parity action on the matrix factorizations plays the key role. This provides
all the requisite data for an orientifold construction after embedding in
string theory. One of our main results is a computation of topological field
theory correlators on unoriented worldsheets, generalizing the formulas of Vafa
and Kapustin-Li for oriented worldsheets, as well as the extension of these
results to orbifolds. We also find a doubling of Knoerrer periodicity in the
orientifold context.Comment: 45 pages, 6 figure
Characterizing normal crossing hypersurfaces
The objective of this article is to give an effective algebraic
characterization of normal crossing hypersurfaces in complex manifolds. It is
shown that a hypersurface has normal crossings if and only if it is a free
divisor, has a radical Jacobian ideal and a smooth normalization. Using K.
Saito's theory of free divisors, also a characterization in terms of
logarithmic differential forms and vector fields is found and and finally
another one in terms of the logarithmic residue using recent results of M.
Granger and M. Schulze.Comment: v2: typos fixed, final version to appear in Math. Ann.; 24 pages, 2
figure
Purification and characterization of recombinant expressed apple allergen Mal d 1
Mal d 1 is the primary apple allergen in northern Europe. To explain the differences in the allergenicity of apple varieties, it is essential to study its properties and interaction with other phytochemicals, which might modulate the allergenic potential. Therefore, an optimized production route followed by an unsophisticated purification step for Mal d 1 and respective mutants is desired to produce sufficient amounts. We describe a procedure for the transformation of the plasmid in competent E. coli cells, protein expression and rapid one-step purification. r-Mal d 1 with and without a polyhistidine-tag are purified by immobilized metal ion affinity chromatography (IMAC) and fastprotein liquid chromatography (FPLC) using a high-resolution anion-exchange column, respectively. Purity is estimated by SDS-PAGE using an image-processing program (Fiji). For both mutants an appropriate yield of r-Mal d 1 with purity higher than 85% is achieved. The allergen is characterized after tryptic in gel digestion by peptide analyses using HPLC-MS/MS. Secondary structure elements are calculated based on CD-spectroscopy and the negligible impact of the polyhistidine-tag on the folding is confirmed. The formation of dimers is proved by mass spectrometry and reduction by DTT prior to SDS-PAGE. Furthermore, the impact of the freeze and thawing process, freeze drying and storage on dimer formation is investigated
Quiver GIT for varieties with tilting bundles
In the setting of a variety X admitting a tilting bundle T we consider the problem of constructing X as a quiver GIT quotient of the algebra A:=EndX(T)opA:=EndX(T)op . We prove that if the tilting equivalence restricts to a bijection between the skyscraper sheaves of X and the closed points of a quiver representation moduli functor for A=EndX(T)opA=EndX(T)op then X is indeed a fine moduli space for this moduli functor, and we prove this result without any assumptions on the singularities of X. As an application we consider varieties which are projective over an affine base such that the fibres are of dimension 1, and the derived pushforward of the structure sheaf on X is the structure sheaf on the base. In this situation there is a particular tilting bundle on X constructed by Van den Bergh, and our result allows us to reconstruct X as a quiver GIT quotient for an easy to describe stability condition and dimension vector. This result applies to flips and flops in the minimal model program, and in the situation of flops shows that both a variety and its flop appear as moduli spaces for algebras produced from different tilting bundles on the variety. We also give an application to rational surface singularities, showing that their minimal resolutions can always be constructed as quiver GIT quotients for specific dimension vectors and stability conditions. This gives a construction of minimal resolutions as moduli spaces for all rational surface singularities, generalising the G-Hilbert scheme moduli space construction which exists only for quotient singularities
- …