936 research outputs found
Nicotine exposure in the developing bullfrog: influences on neuroventilatory responses to COâ‚‚
Thesis (M.S.) University of Alaska Fairbanks, 2008Developmental exposure to the neuroteratogen nicotine may affect ventilatory responses to hypercapnia. Developmental changes in normocapnic and hypercapnic neuroventilation of the isolated bullfrog brainstem preparation have been previously characterized. I investigated the effect of 3- and 10-wk chronic nicotine (30 [mu]g/L) exposure on lung burst frequency exhibited by early and late metamorphic bullfrog tadpoles during normocapnia (1.5 % COâ‚‚) and hypercapnia (5.0 % COâ‚‚). Chronic nicotine exposure impairs the hypercapnic neuroventilatory response of early metamorphic tadpoles following both 3- and 10-wk exposure. Late metamorphic tadpoles demonstrated an impaired hypercapnic neuroventilatory response only after 10-wk exposure. Chronic nicotine exposure had no effect on normocapnic neuroventilation. Brainstem preparations from early and late metamorphic tadpoles and juvenile bullfrogs were exposed acutely to 18 [mu]g/L nicotine. Acute nicotine had no effect on normocapnic or hypercapnic neuroventilation of early metamorphic tadpoles. Late metamorphic tadpoles and juvenile bullfrogs demonstrated depressed normocapnic neuroventilation in response to acute nicotine exposure, while late metamorphic tadpole brainstems responded significantly to hypercapnia during acute exposure. This suggests that bullfrogs have a differential response to acute nicotine exposure that increases with development. Collectively these data suggest that the consequences of developmental nicotine exposure differ between acute and chronic exposure and throughout bullfrog development.1. Timing and duration of developmental nicotine exposure contribute to attenuation of the tadpole hypercapnic response -- 2. Nicotine affects the normocapnic and hypercapnic neuroventilation of bullfrogs in a developmental stage dependent manner -- General conclusions -- Literature cited
Study of the effectiveness of specific remediation in the amelioration of psycholinguistic disabilities in visual-motor and auditory-vocal memory sequencing
The purpose of this paper is to report on a study that attempted to remediate children with known learning disabilities at the automatic sequential level and more specifically in the channels of visual-motor and auditory-vocal memory sequencing. The major goal of the study was to undertake remediation in these definite low-score areas as charted on four individual profiles of The Illinois Test of Psycholinguistic Abilities (ITPA) in an effort to ameliorate the deficits. These weak areas were approached by the presentation of skills in the stronger ability channels. Thus, if a child was experiencing a learning deficit in the visual-motor memory sequencing area, materials and information were presented that consistently involved his strong auditory-vocal memory sequencing receptors as indicated on his ITPA profile, while simultaneously structuring the visual-motor channel, and hopefully, improving related areas also
Neuroplasticity And Neurotoxicology: Central Breathing Control Following Developmental Nicotine Or Ethanol Exposure
Thesis (Ph.D.) University of Alaska Fairbanks, 2010Nicotine or ethanol exposure early in development are both risk factors for Sudden Infant Death Syndrome (SIDS). I tested the hypothesis that both nicotine and ethanol may be linked to SIDS by impairing central breathing control responses to low oxygen (hypoxia) and high carbon dioxide (hypercapnia) stressors. Experiments were conducted in bullfrog tadpoles, a model system for respiratory neurotoxicology research. I addressed three specific aims: to characterize the effect of chronic ethanol on central responses to hypercapnia and hypoxia, to characterize the effect of chronic nicotine on central hypoxic responses, and to determine the persistence of hypercapnic impairments following 10-wk exposure to either nicotine or ethanol. 10-wk nicotine exposure resulted in neuroplastic changes that eliminated the central hypoxic responses of early but not late metamorphic tadpoles. Thus, central responses to both hypoxia and hypercapnia were impaired following nicotine exposure. The attenuated central hypercapnic response of nicotine-exposed tadpoles persisted for 1 - 3 wk. Following 10-wk chronic ethanol exposure central responses to hypercapnia and hypoxia were lost regardless of the developmental timing of exposure. Impairments in central hypercapnic responses persisted for 3 - 6 wk after ethanol exposure ended. The recovery of central hypercapnic responses in nicotine- and ethanol-exposed tadpoles may be an example of recuperative neuroplasticity resulting in either a reinstatement of network components and functions or an accommodation to deleterious nicotine- and ethanol-evoked neuroplastic changes. Collectively these data suggest that both nicotine and ethanol may target adaptive and compensatory mechanisms in central breathing control. The teratogen-induced impairments were developmentally dependent in the case of nicotine, and they persisted longer following ethanol exposure. The overall result of exposure to either neuroteratogen was an inability to respond to central breathing stressors, supporting the possible link to SIDS
X-band system performance of the very large array
The Very Large Array (VLA) is being equipped to receive telemetry from Voyager 2 during the Neptune encounter in 1989. Cryogenically cooled amplifiers are being installed on each of the 27 antennas. These amplifiers are currently a mix of field effect transistors (FETs) and high electron mobility transistors (HEMTs) and exhibit zenith system temperatures that range from 30 to 52 K. The system temperatures and aperture efficiencies determined during the past year are summarized. The nominal values of the noise diode calibration are compared with derived values made under the assumption of a uniform atmosphere over the array. Gain values are determined from observations of unresolved radio sources whose flux densities are well known. The tests suggest that the completed VLA will have a ratio of gain to system temperature that is approximately 4.4 dB above that of a single 64 m antenna of the Deep Space Network
A brief survey of deep reinforcement learning
Deep reinforcement learning (DRL) is poised to revolutionize the field of artificial intelligence (AI) and represents a step toward building autonomous systems with a higherlevel understanding of the visual world. Currently, deep learning is enabling reinforcement learning (RL) to scale to problems that were previously intractable, such as learning to play video games directly from pixels. DRL algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of RL, then progress to the main streams of value-based and policy-based methods. Our survey will cover central algorithms in deep RL, including the deep Q-network (DQN), trust region policy optimization (TRPO), and asynchronous advantage actor critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via RL. To conclude, we describe several current areas of research within the field
Deep Reinforcement Learning: A Brief Survey
Deep reinforcement learning (DRL) is poised to revolutionize the field of artificial intelligence (AI) and represents a step toward building autonomous systems with a higher-level understanding of the visual world. Currently, deep learning is enabling reinforcement learning (RL) to scale to problems that were previously intractable, such as learning to play video games directly from pixels. DRL algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of RL, then progress to the main streams of value-based and policy-based methods. Our survey will cover central algorithms in deep RL, including the deep Q-network (DQN), trust region policy optimization (TRPO), and asynchronous advantage actor critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via RL. To conclude, we describe several current areas of research within the field
A Candidate Protoplanet in the Taurus Star Forming Region
HST/NICMOS images of the class I protostar TMR-1 (IRAS04361+2547) reveal a
faint companion with 10.0" = 1400 AU projected separation. The central
protostar is itself resolved as a close binary with 0.31" = 42 AU separation,
surrounded by circumstellar reflection nebulosity. A long narrow filament seems
to connect the protobinary to the faint companion TMR-1C, suggesting a physical
association. If the sources are physically related then we hypothesize that
TMR-1C has been ejected by the protobinary. If TMR-1C has the same age and
distance as the protobinary then current models indicate its flux is consistent
with a young giant planet of several Jovian masses.Comment: 16 pages, 1 figure, Accepted by Astrophysical Journal Letters,
Related information is available at http://www.extrasolar.co
- …