13 research outputs found

    Spermiogenesis and spermatozoon ultrastructure of the bothriocephalidean cestode Clestobothrium crassiceps (Rudolphi, 1819), a parasite of the teleost fish Merluccius merluccius (Gadiformes: Merlucciidae)

    Get PDF
    Spermiogenesis and the ultrastructure of the spermatozoon of the bothriocephalidean cestode Clestobothrium crassiceps (Rudolphi, 1819), a parasite of the teleost fish Merluccius merluccius (Linnaeus, 1758), have been studied by means of transmission electron microscopy. Spermiogenesis involves firstly the formation of a differentiation zone. It is characterized by the presence of two centrioles associated with striated rootlets, an intercentriolar body and an electron-dense material in the apical region of this zone. Later, two flagella develop from the centrioles, growing orthogonally in relation to the median cytoplasmic process. Flagella then undergo a rotation of 90° until they become parallel to the median cytoplasmic process, followed by the proximodistal fusion of the flagella with the median cytoplasmic process. The nucleus elongates and afterwards it migrates along the spermatid body. Spermiogenesis finishes with the appearance of the apical cone surrounded by the single helical crested body at the base of the spermatid. Finally, the narrowing of the ring of arched membranes detaches the fully formed spermatozoon. The mature spermatozoon of C. crassiceps is filiform and contains two axonemes of the 9 + '1' trepaxonematan pattern, a parallel nucleus, parallel cortical microtubules, and electron-dense granules of glycogen. The anterior extremity of the gamete exhibits a short electron-dense apical cone and one crested body, which turns once around the sperm cell. The first axoneme is surrounded by a ring of thick cortical microtubules that persist until the appearance of the second axoneme. Later, these thick cortical microtubules disappear and thus, the mature spermatozoon exhibits two bundles of thin cortical microtubules. The posterior extremity of the male gamete presents only the nucleus. Results are discussed and compared particularly with the available ultrastructural data on the former 'pseudophyllideans'. Two differences can be established between spermatozoa of Bothriocephalidea and Diphyllobothriidea, the type of spermatozoon (II vs I) and the presence/absence of the ring of cortical microtubules

    Spermiogenesis and spermatozoon ultrastructure of the diphyllidean cestode Echinobothrium euterpes (Neifar, Tyler and Euzet 2001) Tyler 2006, a parasite of the common guitarfish Rhinobatos rhinobatos

    Get PDF
    Spermiogenesis and the ultrastructural characters of the spermatozoon of Echinobothrium euterpes are described by means of transmission electron microscopy, including cytochemical analysis for glycogen. Materials were obtained from a common guitarfish Rhinobatos rhinobatos caught in the Gulf of Gabès (Tunisia). Spermiogenesis in E. euterpes is characterized by the orthogonal development of two unequal flagella followed by the flagellar rotation and the proximodistal fusion of these flagella with the median cytoplasmic process. The most interesting pattern characterizing the diphyllidean cestodes is the presence of a triangular body constituted by fines and dense granules without visible striation and assimilated at the striated rootlets. This pattern, only related in the Diphyllidea cestodes may be a synapomorphy of this order. Spermiogenesis is also characterized by the presence of a very short flagellum (around 1 μm long), observed in all the stages of spermiogenesis. This type of flagellum has never been commented in the diphyllidean cestodes and should be considered as an evolved character in this group. In the latest stage of spermiogenesis, this short axoneme probably degenerates. Thus, the mature spermatozoon of E. euterpes possesses only one axoneme of 9 + '1' trepaxonematan pattern. It also exhibits a single helical electron-dense crested body, a spiraled nucleus, few parallel cortical microtubules, and α-glycogen granules. Similitudes and differences between spermatozoa of diphyllideans are discussed

    Ultrastructure and cytochemistry of the mature spermatozoon of Khawia armeniaca (Cholodkovsky, 1915) (Caryophyllidea: Lytocestidae), a parasite of Capoeta capoeta sevangi (De Filippi, 1865) (Teleostei, Cyprinidae)

    No full text
    The mature spermatozoon of Khawia armeniaca, a monozoic caryophyllidean parasite of templar fish Capoeta capoeta sevangi (De Filippi, 1865) from the Lake Sevan, Armenia, has been studied using transmission electron microscopy and cytochemical technique of Thiéry (1967) for the first time. The mature spermatozoon of K. armeniaca consists of a single axoneme with the 9+‘1’ trepaxonematan structure, cortical microtubules and nucleus which are situated parallel to the longitudinal axis of the spermatozoon, and a moderately electrondense cytoplasm with glycogen particles. The cortical microtubules are arranged in one continuous semicircle beneath the plasma membrane in Region II and anterior part of Region III of the mature spermatozoon. The two opposite rows of cortical microtubules are observed in the remaining nuclear and at the beginning of the postnuclear part (Regions III, IV) of the male gamete The number of cortical microtubules is remarkably variable in the spermatozoa of various Khawia species. K. armeniaca exhibits the highest number of cortical microtubules in comparison with K. sinensis and K. rossittensis. Glycogen was detected in the cytoplasm of prenuclear (II), nuclear (III) and postnuclear (IV) regions with different ultrastructural organization of the mature spermatozoon of K. armeniaca. Variations of sperm ultrastructural characters within caryophyllideans and other cestodes are discussed

    Fine structure of the uteri in two hymenolepidid tapeworm Skrjabinacanthus diplocoronatus and Urocystis prolifer (Cestoda: Cyclophyllidea) parasitic in shrews that display different fecundity of the strobilae

    No full text
    Adult specimens of Skrjabinacanthus diplocoronatus and Urocystis prolifer were investigated by light and transmission electron microscopy, and data on the uterine organization in these species are presented. The interrelationships of morphological changes of the uterus and developing eggs on the one hand with fecundities of the strobilae of cyclophyllidean cestodes on the other hand are investigated. The development of the excretory system forming a network of excretory ducts close to the uterus is characteristic of S. diplocoronatus. Numerous excretory ducts are located near the uterus or contact the uterine epithelium and are also found in uterine cords. Accumulation of lipids is observed in the cavity of excretory ducts, in muscular cells, and in the lumen of the uterus as well as in the developing eggs. This species displays the largest fecundity among cestode parasites of the shrew. U. prolifer has one of the lowest fecundities among cestodes from shrews. A small amount of lipids found in cells of gravid proglottids could serve as a supply of nutrients. It seems that some cestodes with great fecundity possess specific paths by which eggs are supplied with nutrients. As a result, diverse modifications of the uterus in Cyclophyllidea are formed
    corecore